1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Phase diagram of compressively strained nickelate thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/3/10.1063/1.4820431
1.
1. D. M. Newns, J. A. Misewich, C. C. Tsuei, A. Gupta, B. A. Scott, and A. Schrott, Appl. Phys. Lett. 73(6), 780 (1998).
http://dx.doi.org/10.1063/1.121999
2.
2. C. Zhou, D. M. Newns, J. A. Misewich, and P. C. Pattnaik, Appl. Phys. Lett. 70(5), 598 (1997).
http://dx.doi.org/10.1063/1.118285
3.
3. M. L. Medarde, J. Phys.: Condens. Matter. 9(8), 1679 (1997).
http://dx.doi.org/10.1088/0953-8984/9/8/003
4.
4. J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, M. A. G. Aranda, and M. T. Fernández-Díaz, J. Am. Chem. Soc. 121(20), 4754 (1999).
http://dx.doi.org/10.1021/ja984015x
5.
5. J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and C. Niedermayer, Phys. Rev. B 45(14), 8209 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.8209
6.
6. P. Canfield, J. Thompson, S. W. Cheong, and L. Rupp, Phys. Rev. B 47(18), 12357 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.12357
7.
7. M. Medarde, P. Lacorre, K. Conder, J. Rodríguez-Carvajal, S. Rosenkranz, F. Fauth, and A. Furrer, Physica B 241–243, 751 (1997).
http://dx.doi.org/10.1016/S0921-4526(97)00712-6
8.
8. X. Obradors, L. Paulius, M. Maple, J. Torrance, A. Nazzal, J. Fontcuberta, and X. Granados, Phys. Rev. B 47(18), 12353 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.12353
9.
9. F. Conchon, A. Boulle, R. Guinebretière, C. Girardot, S. Pignard, J. Kreisel, F. Weiss, E. Dooryhée, and J.-L. Hodeau, Appl. Phys. Lett. 91(19), 192110 (2007).
http://dx.doi.org/10.1063/1.2800306
10.
10. R. Eguchi, Y. Okamoto, Z. Hiroi, S. Shin, A. Chainani, Y. Tanaka, M. Matsunami, Y. Takata, Y. Nishino, K. Tamasaku, M. Yabashi, and T. Ishikawa, J. Appl. Phys. 105(5), 056103 (2009).
http://dx.doi.org/10.1063/1.3086666
11.
11. Y. Kumar, R. J. Choudhary, and R. Kumar, J. Appl. Phys. 112(7), 073718 (2012).
http://dx.doi.org/10.1063/1.4758306
12.
12. J. Liu, M. Kareev, B. Gray, J. W. Kim, P. Ryan, B. Dabrowski, J. W. Freeland, and J. Chakhalian, Appl. Phys. Lett. 96(23), 233110 (2010).
http://dx.doi.org/10.1063/1.3451462
13.
13. M. A. Novojilov, O. Yu Gorbenko, I. E. Graboy, A. R. Kaul, H. W. Zandbergen, N. A. Babushkina, and L. M. Belova, Appl. Phys. Lett. 76(15), 2041 (2000).
http://dx.doi.org/10.1063/1.126248
14.
14. A. Tiwari, C. Jin, and J. Narayan, Appl. Phys. Lett. 80(21), 4039 (2002).
http://dx.doi.org/10.1063/1.1480475
15.
15. J. Chakhalian, J. M. Rondinelli, J. Liu, B. A. Gray, M. Kareev, E. J. Moon, N. Prasai, J. L. Cohn, M. Varela, I. C. Tung, M. J. Bedzyk, S. G. Altendorf, F. Strigari, B. Dabrowski, L. H. Tjeng, P. J. Ryan, and J. W. Freeland, Phys. Rev. Lett. 107(11), 116805 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.116805
16.
16. S. J. May, J. W. Kim, J. M. Rondinelli, E. Karapetrova, N. A. Spaldin, A. Bhattacharya, and P. J. Ryan, Phys. Rev. B 82(1), 014110 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.014110
17.
17. P. Laffez, M. Zaghrioui, I. Monot, T. Brousse, and P. Lacorre, Thin Solid Films 354(1-2), 50 (1999).
http://dx.doi.org/10.1016/S0040-6090(99)00557-X
18.
18. R. D. Shannon, Acta Cryst. A 32(5), 751 (1976).
http://dx.doi.org/10.1107/S0567739476001551
19.
19. M. Medarde, J. Mesot, P. Lacorre, S. Rosenkranz, P. Fischer, and K. Gobrecht, Phys. Rev. B 52(13), 9248 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.9248
20.
20. P. Laffez, O. I. Lebedev, P. Ruello, R. Desfeux, G. Banerjee, and F. Capon, Eur. Phys. J.: Appl. Phys. 25(1), 25 (2003).
http://dx.doi.org/10.1051/epjap:2003087
21.
21. R. Scherwitzl, P. Zubko, I. Gutierrez Lezama, S. Ono, A. F. Morpurgo, G. Catalan, and J.-M. Triscone, Adv. Mater. 22(48), 5517 (2010).
http://dx.doi.org/10.1002/adma.201003241
22.
22. J. Son, P. Moetakef, J. M. LeBeau, D. Ouellette, L. Balents, S. James Allen, and S. Stemmer, Appl. Phys. Lett. 96(6), 062114 (2010).
http://dx.doi.org/10.1063/1.3309713
23.
23. B. Berini, N. Keller, Y. Dumont, E. Popova, W. Noun, M. Guyot, J. Vigneron, A. Etcheberry, N. Franco, and R. da Silva, Phys. Rev. B 76(20), 205417 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.205417
24.
24. A. Kumar, P. Singh, D. Kaur, J. Jesudasan, and P. Raychaudhuri, J. Phys. D 39(24), 5310 (2006).
http://dx.doi.org/10.1088/0022-3727/39/24/032
25.
25. M. Medarde, A. Fontaine, J. García-Muñoz, J. Rodríguez-Carvajal, M. de Santis, M. Sacchi, G. Rossi, and P. Lacorre, Phys. Rev. B 46(23), 14975 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.14975
26.
26.See supplementary material at http://dx.doi.org/10.1063/1.4820431 for growth methods and characterization as well as details of the CTR fitting. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/3/10.1063/1.4820431
Loading
/content/aip/journal/aplmater/1/3/10.1063/1.4820431
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/3/10.1063/1.4820431
2013-09-12
2014-08-23

Abstract

The complex phase diagrams of strongly correlated oxides arise from the coupling between physical and electronic structure. This can lead to a renormalization of the phase boundaries when considering thin films rather than bulk crystals due to reduced dimensionality and epitaxial strain. The well-established bulk NiO phase diagram shows a systematic dependence between the metal-insulator transition and the perovskite -site rare-earth ion, . Here, we explore the equivalent phase diagram for nickelate thin films under compressive epitaxial strain. We determine the metal-insulator phase diagram for the solid solution of NdLaNiO thin films within the range 0 ≤ y ≤ 1. We find qualitative similarity between the films and their bulk analogs, but with an overall renormalization in the metal-insulator transition to lower temperature. A combination of x-ray diffraction measurements and soft x-ray absorption spectroscopy indicates that the renormalization is due to increased Ni–O bond hybridization for coherently strained thin films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/3/1.4820431.html;jsessionid=458qblatrbgl7.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/3/10.1063/1.4820431&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Phase diagram of compressively strained nickelate thin films
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/3/10.1063/1.4820431
10.1063/1.4820431
SEARCH_EXPAND_ITEM