1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/1/3/10.1063/1.4820433
1.
1. A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angew. Chem., Int. Ed. 37(4), 402 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
2.
2. Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, Jpn. J. Appl. Phys. 30(11B), L1941 (1991).
http://dx.doi.org/10.1143/JJAP.30.L1941
3.
3. G. Grem, G. Leditzky, B. Ullrich, and G. Leising, Adv. Mater. 4(1), 36 (1992).
http://dx.doi.org/10.1002/adma.19920040107
4.
4. X. C. Li, T. M. Yong, J. Gruner, A. B. Holmes, S. C. Moratti, F. Cacialli, and R. H. Friend, Synth. Met. 84(1–3), 437 (1997).
http://dx.doi.org/10.1016/S0379-6779(97)80820-X
5.
5. M. T. Bernius, M. Inbasekaran, J. O’Brien, and W. S. Wu, Adv. Mater. 12(23), 1737 (2000).
http://dx.doi.org/10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N
6.
6. E. Bundgaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells 91(11), 954 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.01.015
7.
7. E. J. Meijer, D. M. De Leeuw, S. Setayesh, E. Van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nature Mater. 2(10), 678 (2003).
http://dx.doi.org/10.1038/nmat978
8.
8. M. Zhang, H. N. Tsao, W. Pisula, C. D. Yang, A. K. Mishra, and K. Mullen, J. Am. Chem. Soc. 129(12), 3472 (2007).
http://dx.doi.org/10.1021/ja0683537
9.
9. L. Chen, B. Zhang, Y. Cheng, Z. Xie, L. Wang, X. Jing, and F. Wang, Adv. Funct. Mater. 20(18), 3143 (2010).
http://dx.doi.org/10.1002/adfm.201000840
10.
10. S. Tasch, E. J. W. List, C. Hochfilzer, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Mullen, Phys. Rev. B 56(8), 4479 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.4479
11.
11. G. Qian, Z. Zhong, M. Luo, D. Yu, Z. Zhang, D. Ma, and Z. Y. Wang, J. Phys. Chem. C 113(4), 1589 (2009).
http://dx.doi.org/10.1021/jp809568a
12.
12. Y. X. Yang, R. T. Farley, T. T. Steckler, S. H. Eom, J. R. Reynolds, K. S. Schanze, and J. G. Xue, Appl. Phys. Lett. 93(16), 163305 (2008).
http://dx.doi.org/10.1063/1.3006059
13.
13. J. Morgado, F. Cacialli, R. H. Friend, R. Iqbal, G. Yahioglu, L. R. Milgrom, S. C. Moratti, and A. B. Holmes, Chem. Phys. Lett. 325(5-6), 552 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00725-9
14.
14. O. Fenwick, J. K. Sprafke, J. Binas, D. V. Kondratuk, F. Di Stasio, H. L. Anderson, and F. Cacialli, Nano Lett. 11(6), 2451 (2011).
http://dx.doi.org/10.1021/nl2008778
15.
15. E. L. Williams, J. Li, and G. E. Jabbour, Appl. Phys. Lett. 89(8), 083506 (2006).
http://dx.doi.org/10.1063/1.2335275
16.
16. L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. van Veggel, and D. N. Reinhoudt, Appl. Phys. Lett. 78(15), 2122 (2001).
http://dx.doi.org/10.1063/1.1359782
17.
17. K. Y. Cheng, R. Anthony, U. R. Kortshagen, and R. J. Holmes, Nano Lett. 10(4), 1154 (2010).
http://dx.doi.org/10.1021/nl903212y
18.
18. C. E. Finlayson, A. Amezcua, P. J. A. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, J. Mod. Opt. 52(7), 955 (2005).
http://dx.doi.org/10.1080/09500340512331327589
19.
19. N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, Science 295(5559), 1506 (2002).
http://dx.doi.org/10.1126/science.1068153
20.
20. Y. X. Yang, R. T. Farley, T. T. Steckler, S. H. Eom, J. R. Reynolds, K. S. Schanze, and J. G. Xue, J. Appl. Phys. 106(4), 044509 (2009).
http://dx.doi.org/10.1063/1.3204947
21.
21. P. L. Li, O. Fenwick, S. Yilmaz, D. Breusov, D. J. Caruana, S. Allard, U. Scherf, and F. Cacialli, Chem. Commun. 47(31), 8820 (2011).
http://dx.doi.org/10.1039/c1cc12752g
22.
22. T. T. Steckler, O. Fenwick, T. Lockwood, M. R. Andersson, and F. Cacialli, Macromol. Rapid Commun. 34(12), 990 (2013).
http://dx.doi.org/10.1002/marc.201300240
23.
23. G. Tzamalis, V. Lemaur, F. Karlsson, P. O. Holtz, M. R. Andersson, X. Crispin, J. Cornil, and M. Berggren, Chem. Phys. Lett. 489(1–3), 92 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.02.049
24.
24. R. J. Curry and W. P. Gillin, Appl. Phys. Lett. 75(10), 1380 (1999).
http://dx.doi.org/10.1063/1.124700
25.
25. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, Nature Photon. 7(1), 13 (2013).
http://dx.doi.org/10.1038/nphoton.2012.328
26.
26. Y. L. Chang, Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, and Z. H. Lu, Org. Electron. 13(5), 925 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.01.026
27.
27. D. H. Kim, N. S. Cho, H.-Y. Oh, J. H. Yang, W. S. Jeon, J. S. Park, M. C. Suh, and J. H. Kwon, Adv. Mater. 23(24), 2721 (2011).
http://dx.doi.org/10.1002/adma.201100405
28.
28. J. V. Caspar, E. M. Kober, B. P. Sullivan, and T. J. Meyer, J. Am. Chem. Soc. 104(2), 630 (1982).
http://dx.doi.org/10.1021/ja00366a051
29.
29. R. Englman and J. Jortner, Mol. Phys. 18(2), 145 (1970).
http://dx.doi.org/10.1080/00268977000100171
30.
30. F. Cacialli, R. H. Friend, C. M. Bouche, P. Le Barny, H. Facoetti, F. Soyer, and P. Robin, J. Appl. Phys. 83(4), 2343 (1998).
http://dx.doi.org/10.1063/1.366977
31.
31. Y. Kim and D. D. C. Bradley, Curr. Appl. Phys. 5(3), 222 (2005).
http://dx.doi.org/10.1016/j.cap.2003.11.090
32.
32. Z. M. Hao and A. Iqbal, Chem. Soc. Rev. 26(3), 203 (1997).
http://dx.doi.org/10.1039/cs9972600203
33.
33. K. Zhang and B. Tieke, Macromolecules 41(20), 7287 (2008).
http://dx.doi.org/10.1021/ma801376r
34.
34. S. Stas, J.-Y. Balandier, V. Lemaur, O. Fenwick, G. Tregnago, F. Quist, F. Cacialli, J. Cornil, and Y. H. Geerts, Dyes Pigm. 97(1), 198 (2013).
http://dx.doi.org/10.1016/j.dyepig.2012.12.005
35.
35. M. Grzybowski, E. Glodkowska-Mrowka, T. Stoklosa, and D. T. Gryko, Org. Lett. 14(11), 2670 (2012).
http://dx.doi.org/10.1021/ol300674v
36.
36. M. Shahid, R. S. Ashraf, Z. G. Huang, A. J. Kronemeijer, T. McCarthy-Ward, I. McCulloch, J. R. Durrant, H. Sirringhaus, and M. Heeney, J. Mater. Chem. 22(25), 12817 (2012).
http://dx.doi.org/10.1039/c2jm31189e
37.
37. Y. Qu, J. L. Hue, and H. Tian, Org. Lett. 12(15), 3320 (2010).
http://dx.doi.org/10.1021/ol101081m
38.
38. C. B. Nielsen, M. Turbiez, and I. McCulloch, Adv. Mater. 25(13), 18591880 (2013).
http://dx.doi.org/10.1002/adma.201201795
39.
39. Z. Qiao, Y. B. Xu, S. M. Lin, J. B. Peng, and D. R. Cao, Synth. Met. 160(13-14), 1544 (2010).
http://dx.doi.org/10.1016/j.synthmet.2010.05.019
40.
40. Z. Qiao, J. B. Peng, Y. Jin, Q. L. Liu, J. E. N. Weng, Z. C. He, S. H. Han, and D. R. Cao, Polymer 51(5), 1016 (2010).
http://dx.doi.org/10.1016/j.polymer.2009.12.044
41.
41. Y. Jin, Y. B. Xu, Z. Qiao, J. B. Peng, B. Z. Wang, and D. R. Cao, Polymer 51(24), 5726 (2010).
http://dx.doi.org/10.1016/j.polymer.2010.09.046
42.
42. D. R. Cao, Q. L. Liu, W. J. Zeng, S. H. Han, J. B. Peng, and S. P. Liu, Macromolecules 39(24), 8347 (2006).
http://dx.doi.org/10.1021/ma0615349
43.
43. D. R. Cao, Q. L. Liu, W. J. Zeng, S. H. Han, J. B. Peng, and S. P. Liu, J. Polym. Sci., Pol. Chem. 44(8), 2395 (2006).
http://dx.doi.org/10.1002/pola.21354
44.
44. Y. Zhu, A. R. Rabindranath, T. Beyerlein, and B. Tieke, Macromolecules 40(19), 6981 (2007).
http://dx.doi.org/10.1021/ma0710941
45.
45. T. Beyerlein, B. Tieke, S. Forero-Lenger, and W. Brutting, Synth. Met. 130(2), 115 (2002).
http://dx.doi.org/10.1016/S0379-6779(02)00058-9
46.
46. Y. B. Xu, Y. Jin, W. H. Lin, J. B. Peng, H. F. Jiang, and D. R. Cao, Synth. Met. 160(19-20), 2135 (2010).
http://dx.doi.org/10.1016/j.synthmet.2010.07.044
47.
47. J. S. Zambounis, Z. Hao, and A. Iqbal, Nature (London) 388(6638), 131 (1997).
http://dx.doi.org/10.1038/40532
48.
48. A. R. Rabindranath, Y. Zhu, I. Heim, and B. Tieke, Macromolecules 39(24), 8250 (2006).
http://dx.doi.org/10.1021/ma061024e
49.
49. L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, Nature (London) 434(7030), 194 (2005).
http://dx.doi.org/10.1038/nature03376
50.
50. J. Zaumseil, C. L. Donley, J. S. Kim, R. H. Friend, and H. Sirringhaus, Adv. Mater. 18(20), 2708 (2006).
http://dx.doi.org/10.1002/adma.200601080
51.
51. M. Svensson, F. L. Zhang, S. C. Veenstra, W. J. H. Verhees, J. C. Hummelen, J. M. Kroon, O. Inganas, and M. R. Andersson, Adv. Mater. 15(12), 988 (2003).
http://dx.doi.org/10.1002/adma.200304150
52.
52. C. S. Ponseca, H. Nemec, N. Vukmirovic, S. Fusco, E. G. Wang, M. R. Andersson, P. Chabera, A. Yartsev, and V. Sundstrom, J. Phys. Chem. Lett. 3(17), 2442 (2012).
http://dx.doi.org/10.1021/jz301013u
53.
53.See supplementary material at http://dx.doi.org/10.1063/1.4820433 for experimental details, synthetic information, and further materials characterisation. [Supplementary Material]
54.
54. J. C. de Mello, H. F. Wittmann, and R. H. Friend, Adv. Mater. 9(3), 230 (1997).
http://dx.doi.org/10.1002/adma.19970090308
55.
55. A. Petrozza, S. Brovelli, J. J. Michels, H. L. Anderson, R. H. Friend, C. Silva, and F. Cacialli, Adv. Mater. 20(17), 3218 (2008).
http://dx.doi.org/10.1002/adma.200800007
56.
56. G. E. Khalil, A. M. Adawi, A. M. Fox, A. Iraqi, and D. G. Lidzey, J. Chem. Phys. 130(4), 044903 (2009).
http://dx.doi.org/10.1063/1.3054142
57.
57. L. Sardone, C. Sabatini, G. Latini, F. Barigelletti, G. Marletta, F. Cacialli, and P. Samori, J. Mater. Chem. 17(14), 1387 (2007).
http://dx.doi.org/10.1039/b614789e
58.
58. T. M. Brown and F. Cacialli, J. Polym. Sci., Part B: Polym. Phys. 41(21), 2649 (2003).
http://dx.doi.org/10.1002/polb.10647
59.
59. S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21(14-15), 1450 (2009).
http://dx.doi.org/10.1002/adma.200802893
60.
60. T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, and F. Cacialli, J. Appl. Phys. 93(10), 6159 (2003).
http://dx.doi.org/10.1063/1.1562739
61.
61. I. H. Campbell, T. W. Hagler, D. L. Smith, and J. P. Ferraris, Phys. Rev. Lett. 76(11), 1900 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1900
62.
62. Y. Park, V. Choong, E. Ettedgui, Y. Gao, B. R. Hsieh, T. Wehrmeister, and K. Mullen, Appl. Phys. Lett. 69(8), 1080 (1996).
http://dx.doi.org/10.1063/1.117064
63.
63. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, Appl. Phys. Lett. 75(12), 1679 (1999).
http://dx.doi.org/10.1063/1.124789
64.
64. O. Fenwick, K. Oliver, and F. Cacialli, Appl. Phys. Lett. 100(5), 053309 (2012).
http://dx.doi.org/10.1063/1.3680606
65.
65. G. Winroth, G. Latini, D. Credgington, L. Y. Wong, L. L. Chua, P. K. H. Ho, and F. Cacialli, Appl. Phys. Lett. 92(10), 103308 (2008).
http://dx.doi.org/10.1063/1.2892685
66.
66. R. Jin, P. A. Levermore, J. S. Huang, X. H. Wang, D. D. C. Bradley, and J. C. De Mello, Phys. Chem. Chem. Phys. 11(18), 3455 (2009).
http://dx.doi.org/10.1039/b819200f
67.
67. J. S. Kim, R. H. Friend, I. Grizzi, and J. H. Burroughes, Appl. Phys. Lett. 87(2), 243305 (2005).
http://dx.doi.org/10.1063/1.3668093
68.
68. G. M. Lazzerini, F. Di Stasio, C. Flechon, D. J. Caruana, and F. Cacialli, Appl. Phys. Lett. 99(24), 243305 (2011).
http://dx.doi.org/10.1063/1.3668093
69.
69. M. Shakutsui, H. Matsuura, and K. Fujita, Org. Electron. 10(5), 834 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.04.004
70.
70. R. Q. Png, P. J. Chia, J. C. Tang, B. Liu, S. Sivaramakrishnan, M. Zhou, S. H. Khong, H. S. O. Chan, J. H. Burroughes, L. L. Chua, R. H. Friend, and P. K. H. Ho, Nature Mater. 9(2), 152 (2010).
http://dx.doi.org/10.1038/nmat2594
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/3/10.1063/1.4820433
Loading
/content/aip/journal/aplmater/1/3/10.1063/1.4820433
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/3/10.1063/1.4820433
2013-09-06
2015-03-30

Abstract

We report the synthesis, characterization, and device incorporation of copolymers based on a common green-emitting polyfluorene but containing a small proportion of a low energy gap donor-acceptor-donor unit for red emission in photo- and electro-luminescence. At just 1%–3% random incorporation, the low-gap unit is not present on all chains, yet we demonstrate that efficient charge and energy transfer can yield electroluminescent devices with 1% quantum efficiency and a color that can be tuned by adjusting the density of low-gap units to achieve primary red (National Television System Committee). The high current density tail off in the efficiency is reduced by replacing the hole-injection layer with a photochemically cross-linked electron‑blocking layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/3/1.4820433.html;jsessionid=8psckfood2ohm.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/3/10.1063/1.4820433&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Efficient red electroluminescence from diketopyrrolopyrrole copolymerised with a polyfluorene
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/3/10.1063/1.4820433
10.1063/1.4820433
SEARCH_EXPAND_ITEM