1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Large acoustic thermal hysteresis in relaxor ferroelectric Pb(Zn1/3Nb2/3)O3-PbTiO3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/3/10.1063/1.4821624
1.
1. A. A. Bokov and Z.-G. Ye, J. Mater. Sci. 41, 31 (2006).
http://dx.doi.org/10.1007/s10853-005-5915-7
2.
2. G. Burns and B. A. Scott, Solid State Commun. 13, 423 (1973).
http://dx.doi.org/10.1016/0038-1098(73)90622-4
3.
3. V. V. Shvartsman and A. L. Kholkin, Phys. Rev. B 69, 014102 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.014102
4.
4. Z.-G. Ye, Curr. Opin. Solid State Mater. Sci. 6, 35 (2002).
http://dx.doi.org/10.1016/S1359-0286(02)00019-0
5.
5. M. Iwata, K. Katsuraya, I. Suzuki, M. Maeda, N. Yasuda, and Y. Ishibashi, Jpn. J. Appl. Phys. 42, 6201 (2003).
http://dx.doi.org/10.1143/JJAP.42.6201
6.
6. G. Xu, Z. Zhong, H. Hiraka, and G. Shirane, Phys. Rev. B 70, 174109 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.174109
7.
7. S. Tsukada and S. Kojima, Phys. Rev. B 78, 144106 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.144106
8.
8. S. Tsukada, Y. Ike, J. Kano, T. Sekiya, Y. Shimojo, R. Wang, and S. Kojima, J. Phys. Soc. Jpn. 77, 033707 (2008).
http://dx.doi.org/10.1143/JPSJ.77.033707
9.
9. E. Dul'kin, M. Roth, P. E. Janolin, and B. Dkhil, Phys. Rev. B 73, 012102 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.012102
10.
10. M. Roth, E. Mojaev, E. Dul'kin, P. Gemeiner, and B. Dkhil, Phys. Rev. Lett. 98, 265701 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.265701
11.
11. B. Dkhil, P. Gemeiner, A. Al-Barakaty, L. Bellaiche, E. Dul'kin, E. Mojaev, and M. Roth, Phys. Rev. B 80, 064103 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.064103
12.
12. I.-K. Jeong, J. K. Lee, and R. H. Heffner, Appl. Phys. Lett. 92, 172911 (2008).
http://dx.doi.org/10.1063/1.2919070
13.
13. T. Liu and C. Lynch, Continuum Mech. Thermodyn. 18, 119 (2006).
http://dx.doi.org/10.1007/s00161-006-0017-6
14.
14. J.-H. Ko, D. H. Kim, S. Kojima, W. Z. Chen, and Z.-G. Ye, J. Appl. Phys. 100, 066106 (2006).
http://dx.doi.org/10.1063/1.2338829
15.
15. M. H. Kuok, S. C. Ng, H. J. Fan, M. Iwata, and Y. Ishibashi, Appl. Phys. Lett. 78, 1727 (2001).
http://dx.doi.org/10.1063/1.1356733
16.
16. S. Tsukada, Y. Hidaka, S. Kojima, A. A. Bokov, and Z.-G. Ye, Phys. Rev. B 87, 014101 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.014101
17.
17. W. Rehwald, Adv. Phys. 22, 721 (1973).
http://dx.doi.org/10.1080/00018737300101379
18.
18. S. Wakimoto, C. Stock, Z. G. Ye, W. Chen, P. M. Gehring, and G. Shirane, Phys. Rev. B 66, 224102 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.224102
19.
19. N. W. Thomas, S. A. Ivanov, S. Ananta, R. Tellgren, and H. Rundlof, J. Eur. Ceram. Soc. 19, 2667 (1999).
http://dx.doi.org/10.1016/S0955-2219(99)00040-0
20.
20. I.-K. Jeong, Phys. Rev. B 79, 052101 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.052101
21.
21. S. Tsukada, Y. Hiraki, Y. Akishige, and S. Kojima, Phys. Rev. B 80, 012102 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.012102
22.
22. J. Kuwata, K. Uchino, and S. Nomura, Ferroelectrics 37, 579 (1981).
http://dx.doi.org/10.1080/00150198108223490
23.
23. F. Chu, I. M. Reaney, and N. Setter, J. Appl. Phys. 77, 1671 (1995).
http://dx.doi.org/10.1063/1.358856
24.
24. K. Fujishiro, R. Vlokh, Y. Uesu, Y. Yamada, J. M. Kiat, B. Dkhil, and Y. Yamashita, Jpn. J. Appl. Phys. 37, 5246 (1998).
http://dx.doi.org/10.1143/JJAP.37.5246
25.
25. G. Xu, P. M. Gehring, and G. Shirane, Phys. Rev. B 72, 214106 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.214106
26.
26. M. Iwata, K. Sakakibara, R. Aoyagi, M. Maeda, and Y. Ishibashi, Ferroelectrics 405, 39 (2010).
http://dx.doi.org/10.1080/00150193.2010.482886
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/3/10.1063/1.4821624
Loading
/content/aip/journal/aplmater/1/3/10.1063/1.4821624
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/3/10.1063/1.4821624
2013-09-19
2014-10-23

Abstract

The diffuse phase transition in relaxor-based 0.93Pb(Zn Nb )O–0.07PbTiO ferroelectric single crystals is studied by observing the large thermal hysteresis over 100 K of the longitudinal acoustic (LA) phonon. By observing this hysteresis in the LA phonon frequency with different temperature-cycles, it is concluded that nonequilibrium states are induced by supercooling. Relaxor ferroelectrics easily go supercooling, because they demonstrate structural hierarchy like glass-forming materials. The inhomogeneous structure disrupts sharp phase transitions, revealing diffuse phase transition on cooling. However, annealing at low temperatures reduces the inhomogeneity markedly. These interpretations are consistent with LA phonon behavior under electric fields, which reduce the inhomogeneity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/3/1.4821624.html;jsessionid=1fsts5lh8jua1.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/3/10.1063/1.4821624&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Large acoustic thermal hysteresis in relaxor ferroelectric Pb(Zn1/3Nb2/3)O3-PbTiO3
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/3/10.1063/1.4821624
10.1063/1.4821624
SEARCH_EXPAND_ITEM