Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. H. Sommer, “Multi-alkali photocathodes,” IRE Trans. Nucl. Sci. 3, 812 (1956).
2. D. H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley, and W. Wan, “Cathode R and D for future light sources,” Nucl. Instrum. Methods Phys. Res. A 622, 685697 (2010).
3. T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez-Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewelle, and D. Feldman, “Photocathodes for the energy recovery linac,” Nucl. Instrum. Methods Phys. Res. A 557, 124130 (2006).
4. R. R. Mammei, R. Suleiman, J. Feingold, P. A. Adderley, J. Clark, S. Covert, J. Grames, J. Hansknecht, D. Machie, M. Poelker, T. Rao, J. Smedley, J. Walsh, J. L. McCarter, and M. Ruiz-Osés, “Charge lifetime measurements at high average current using a K2CsSb photocathode inside a dc high voltage photogun,” Phys. Rev. ST Accel. Beams 16, 033401 (2013).
5. M. C. McCarroll, R. J. Paff, and A. H. Sommer, “Role of Cs in (Cs) Na2KSb (S20) multialkali photocathode,” J. Appl. Phys. 42, 569572 (1971).
6. C. Ghosh and B. P. Varma, “Preparation and study of properties of a few Alkali antimonide photocathodes,” J. Appl. Phys. 49, 45494553 (1978).
7. C. W. Bates, D. D. Gupta, L. Galan, and D. N. E. Buchanan, “X-ray photoemission studies of cesium antimonide photoemitters,” Thin Solid Films 69, 175182 (1980).
8. A. H. Sommer, Photoemissive Materials: Preparation , Properties and Use (John Wiley & Sons Inc., 1969).
9. T. Vecchione, J. Feng, H. A. Padmore, I. Ben-Zvi, X. Liang, M. Ruiz-Osés, T. Rao, J. Smedley, and D. Dowel, “Effect of roughness on emittance of potassium cesium antimonide photocathodes,” in Proceedings of the 2012 International Accelerator Conference (IPAC12 OC, 2012), paper MOPPP041, pp. 655657.
10. M. Ruiz-Osés et al., “In-situ x-ray diffraction characterization of bi-alkali antimonide photocathodes for high brightness accelerators” (unpublished).
11. M. Ruiz-Osés et al., “Antimony Surface Preparation for Alkali Antimonide Photocathodes” (unpublished).
12. C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. M. Raymond, and L. H. Gale, “Empirical atomic sensitivity factors for qualitative analysis by electron spectroscopy for chemical analysis,” Surf. Interface Anal. 3, 211 (1981).
13. M. Cordona and L. Ley, “Photoemission in solids i,” Top. Appl. Phys. 26, 271 (1978).
14. C. W. Bates, Th. M. van Atekum, G. K. Wertheim, D. N. E. Buchanan, and K. E. Clements, “X-ray photoemission studies of superficially oxidized cesium antimonide photoemitters,” Appl. Phys. Lett. 38, 387389 (1981).
15. L. Soriano and L. Galán, “Interaction of cesium-potassium antimonide photocathode materials with oxygen: An x-ray photoelectron spectroscopy study,” Jpn. J. Appl. Phys. 32, 47374744 (1993).
16. L.-G. Petersson and S.-E. Karlsson, “Clean and oxygen exposed potassium studied by photoelectron spectroscopy,” Phys. Scr. 16, 425431 (1977).
17. A. Braem, C. Joram, F. Piuz, E. Schyns, and J. Séguinot, “Technology of photocathode production,” Nucl. Instrum. Methods Phys. Res. A 502, 205210 (2003).
18. S.-J. Yang and C. W. Bates, Jr., “The role of cesium suboxides in low-work-function surface layers studied by x-ray photoelectron spectroscopy: Ag-O-Cs,” Appl. Phys. Lett. 36, 675677 (1980).
19. G. Ebbinghaus and A. Simon, “Electronic structure of Rb, Cs and some of their metallic oxides studied by photoelectron spectroscopy,” Chem. Phys. 43, 117133 (1979).
20. S. Imamura, “Electrical properties of alkali-antimonides,” J. Phys. Soc. Jpn. 14, 14911496 (1959).
21. S. Valeri, G. Lancellotti, A. di Bona, U. del Pennino, C. Mariani, M. Sancrotti, C. Pagani, and P. Michelato, “Spectroscopic investigation of in-situ prepared multialkali-based photocathodes,” in Proceedings of the European Particle Accelerator Conference (EPAC-94) (London, 1994), Vol. 94, p. 1459.
22. L. Galan and C. W. Bates, “Structure of multialkali antimonide photocathodes studied by x-ray photoelectron spectroscopy,” J. Phys. D 14, 293299 (1981).

Data & Media loading...


Article metrics loading...



Alkali-antimonide photocathodes were grown on Si(100) and studied by means of XPS and UHV-AFM to validate the growth procedure and morphology of this material. The elements were evaporated sequentially at elevated substrate temperatures (first Sb, second K, third Cs). The generated intermediate K-Sb compound itself is a photocathode and the composition of K Sb is close to the favored K Sb stoichiometry. After cesium deposition, the surface layer is cesium enriched. The determined rms roughness of 25 nm results in a roughness domination of the emittance in the photoinjector already above 3 MV/m.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd