1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Giant rotary power of a fishnet-like metamaterial
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/3/10.1063/1.4821627
1.
1. D. R. Smith, W. J. Padilla, D. C. Vier et al., “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4184
2.
2. S. Tretyakov, I. Nefedov, A. Sihvola et al., “Waves and energy in chiral nihility,” J. Electromagn. Waves Appl. 17, 695706 (2003).
http://dx.doi.org/10.1163/156939303322226356
3.
3. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 13531355 (2004).
http://dx.doi.org/10.1126/science.1104467
4.
4. E. Plum, J. Zhou, J. Dong et al., “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035407
5.
5. S. Zhang, Y.-S. Park, Jensen Li et al., “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.023901
6.
6. J. Zhou, J. Dong, B. Wang et al., “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.121104
7.
7. X. Xiong, W.-H. Sun, Y.-J. Bao et al., “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81(7), 075119 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075119
8.
8. M. Decker, M. W. Klein, M. Wegener et al., “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856858 (2007).
http://dx.doi.org/10.1364/OL.32.000856
9.
9. M. Decker, M. Ruther, C. E. Kriegler et al., “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 25012503 (2009).
http://dx.doi.org/10.1364/OL.34.002501
10.
10. M. Decker, R. Zhao, C. M. Soukoulis et al., “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 15931595 (2010).
http://dx.doi.org/10.1364/OL.35.001593
11.
11. Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498500 (2001).
http://dx.doi.org/10.1063/1.1342210
12.
12. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke et al., “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.177401
13.
13. E. Plum, V. A. Fedotov, A. S. Schwanecke et al., “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
http://dx.doi.org/10.1063/1.2745203
14.
14. A. V. Krasavin, A. S. Schwanecke, and N. I. Zheludev, “Extraordinary properties of light transmission through a small chiral hole in a metallic screen,” J. Opt. A, Pure Appl. Opt. 8(4), S98 (2006).
http://dx.doi.org/10.1088/1464-4258/8/4/S08
15.
15. T. J. Sluckin, “The liquid crystal phases: Physics and technology,” Contemp. Phys. 41(1), 3756 (2000).
http://dx.doi.org/10.1080/001075100181268
16.
16. C. Croenne, F. Garet, E. Lheurette et al., “Left handed dispersion of a stack of subwavelength hole metal arrays at terahertz frequencies,” Appl. Phys. Lett. 94(13), 133112 (2009).
http://dx.doi.org/10.1063/1.3114411
17.
17. S. Wang, F. Garet, K. Blary et al., “Composite left/right-handed stacked hole arrays at submillimeter wavelengths,” J. Appl. Phys. 107(7), 074510 (2010).
http://dx.doi.org/10.1063/1.3374703
18.
18. S. Wang, F. Garet, K. Blary et al., “Experimental verification of negative refraction for a wedge-type negative index metamaterial operating at terahertz,” Appl. Phys. Lett. 97(18), 181902 (2010).
http://dx.doi.org/10.1063/1.3511540
19.
19. J. Carbonell, C. Croenne, F. Garet et al., “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys. 108(1), 014907 (2010).
http://dx.doi.org/10.1063/1.3455994
20.
20. F. Garet, L. Duvillaret, and J.-L. Coutaz, “Evidence of frequency-dependent THz beam polarization in time-domain spectroscopy,” Proc. SPIE 3617, 3037 (1999).
http://dx.doi.org/10.1117/12.347128
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/3/10.1063/1.4821627
Loading
/content/aip/journal/aplmater/1/3/10.1063/1.4821627
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/3/10.1063/1.4821627
2013-09-19
2014-10-21

Abstract

We show experimentally and numerically that cholesteric-type metal-dielectric structures, made of twisted sub-wavelength hole elliptical–shaped arrays, exhibit strong optical activity and circular dichroism. The experimental demonstration is carried out with terahertz time-domain spectroscopy measurements on a three layered structure operating around 0.5 THz, leading to a rotary power as high as 1000°/wavelength. The contribution of the chirality factor () permittivity () and permeability () is discussed after the retrieval of effective parameters from the complex scattering ones.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/3/1.4821627.html;jsessionid=afb3wmsdkaer.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/3/10.1063/1.4821627&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Giant rotary power of a fishnet-like metamaterial
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/3/10.1063/1.4821627
10.1063/1.4821627
SEARCH_EXPAND_ITEM