Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Nishio, T. Yanagishita, and H. Masuda, Adv. Mater. 17, 1293 (2005);
1.I. R. Gabitov, R. A. Indik, N. M. Litchinitser, A. I. Maimistov, V. M. Shalaev, and J. E. Soneson, J. Opt. Soc. Am. B 23(3), 535 (2006);
1.C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, and P. Royer, Nano Lett. 5(4), 615 (2005);
1.F. Wang and Y. Shen, Phys. Rev. Lett. 97(20), 206806 (2006);
1.H. Ataee-Esfahani, N. Fukata, and Y. Yamauchi, Chem. Lett. 39(4), 372 (2010);
1.L. Wang, M. Imura, and Y. Yamauchi, Cryst. Eng. Comm. 14(22), 7594 (2012);
1.L. Wang, C.-H. Liu, Y. Nemoto, N. Fukata, K.C.-W. Wu, and Y. Yamauchi, R. Soc. Chem. Adv. 2(11), 4608 (2012).
2. R. Mulero, A. S. Prabhu, K. J. Freedman, and M. J. Kim, J. Assoc. Lab. Autom. 15(3), 243 (2010);
2.M. J. Kim, M. Wanunu, D. C. Bell, and A. Meller, Adv. Mater. 18(23), 3149 (2006).
3. H. Masuda and K. Fukuda, Science 268(5216), 1466 (1995).
4. S. Kim, S. Lee, D. Choi, K. Lee, H. Park, and W. Hwang, Adv. Compos. Mater. 17(2), 101 (2008).
5. L. Liu, M. Shao, L. Cheng, S. Zhuo, R. Que, and S. T. Lee, Appl. Phys. Lett. 98(7), 073114 (2011);
5.K. S. Kim, W. H. Baek, J. M. Kim, T. S. Yoon, H. H. Lee, C. J. Kang, and Y. S. Kim, Sensors (Basel) 10(1), 765 (2010).
6. K. Holmberg, Tribol. Int. 34, 801 (2001);
6.V. V. Tsukruk and V. N. Bliznyuk, Langmuir 14, 446 (1998);
6.B. Bhushan, Tribol. Int. 28(2), 85 (1995);
6.H. Liu and B. Bhushan, Ultramicroscopy 97(1–4), 321 (2003);
6.G. Xie, J. Ding, S. Liu, W. Xue, and J. Luo, Surf. Interface Anal. 41(4), 338 (2009).
7. D. Choi, S. Lee, S. Kim, P. Lee, K. Lee, H. Park, and W. Hwang, Scr. Mater. 58(10), 870 (2008).
8. J. D. Whittaker, E. D. Minot, D. M. Tanenbaum, P. L. McEuen, and R. C. Davis, Nano Lett. 6(5), 953 (2006);
8.J. S. Choi, J. S. Kim, I. S. Byun, D. H. Lee, M. J. Lee, B. H. Park, C. Lee, D. Yoon, H. Cheong, K. H. Lee, Y. W. Son, J. Y. Park, and M. Salmeron, Science 333(6042), 607 (2011);
8.C. Dietz, M. Zerson, C. Riesch, M. Franke, and R. Magerle, Macromolecules 41, 9259 (2008).
9. C. Drummond, Phys. Rev. Lett. 109(15), 154302 (2012).
10. J. Y. Park, D. F. Ogletree, P. A. Thiel, and M. Salmeron, Science 313(5784), 186 (2006).
11. J. Sweeney, F. Hausen, R. Hayes, G. B. Webber, F. Endres, M. W. Rutland, R. Bennewitz, and R. Atkin, Phys. Rev. Lett. 109(15), 155502 (2012);
11.F. Goujon, A. Ghoufi, P. Malfreyt, and D. J. Tildesley, Soft Matter 9(10), 2966 (2013).
12. B. K. Bammannavar, L. R. Naik, and B. K. Chougule, J. Appl. Phys. 104(6), 064123 (2008);
12.P.-H. Chen, H.-Y. Peng, H.-Y. Liu, S.-L. Chang, T.-I. Wu, and C.-H. Cheng, Int. J. Mech. Sci. 41, 235 (1999);
12.B. G. Han, B. Z. Han, and J. P. Ou, Sens. Actuators, A 149(1), 51 (2009);
12.B. K. Gan and K. Yao, Ceram. Int. 35(5), 2061 (2009);
12.C. Miclea, C. Tanasoiu, C. F. Miclea, L. Amarande, A. Gheorghiu, and F. N. Sima, J. Eur. Ceram. Soc. 25(12), 2397 (2005).
13. P. Xie, Q. Xiong, Y. Fang, Q. Qing, and C. M. Lieber, Nat. Nanotechnol. 7, 119 (2012);
13.Y. F. Yuan, X. H. Xia, J. B. Wu, J. L. Yang, Y. B. Chen, and S. Y. Guo, Electrochem. Commun. 12(7), 890 (2010);
13.D.-S. Kong, J.-M. Wang, H.-B. Shao, J.-Q. Zhang, and Chunan Cao, J. Alloys Compd. 509(18), 5611 (2011);
13.X. H. Xia, J. P. Tu, Y. Q. Zhang, Y. J. Mai, X. L. Wang, C. D. Gu, and X. B. Zhao, J. Phys. Chem. C 115(45), 22662 (2011);
13.Y. Q. Zhang, X. H. Xia, X. L. Wang, Y. J. Mai, S. J. Shi, Y. Y. Tang, C. G. Gu, and J. P. Tu, J. Power Sources 213, 106 (2012);
13.T. Nagaura, F. Takeuchi, Y. Yamauchi, K. Wada, and S. Inoue, Electrochem. Commun. 10(5), 681 (2008);
13.Y. Yamauchi, T. Nagaura, K. Takai, N. Suzuki, K. Sato, N. Fukata, S. Inoue, and S. Kishimoto, J. Phys. Chem. 113, 9632 (2009).
14. H. Hertz, J. Reine Angew. Math. 1882(92), 156 (1881).
15. G. Bar and Y. Thomann, Langmuir 14, 1219 (1998);
15.B. B. Sauer, R. S. McLean, and R. R. Thomas, Langmuir. 14, 3045 (1998);
15.M. R. Vanlandingham, R. F. Eduljee, and J. W. Gillespie, Jr., J. Appl. Polym. Sci. 71, 787 (1999).<787::AID-APP12>3.0.CO;2-A
16. K. Wang, H. Lee, R. Cooper, and H. Liang, “Time resolved, stress induced, and anisotropic phase transformation of a piezoelectric polymer,” Appl. Phys. A 95(2), 435441 (2009).

Data & Media loading...


Article metrics loading...



Understanding the effects of electrical potential on nanoscale contacts is critically needed for design and development of nanodevices. In the present letter, we characterize the metallic nanopore structure of nickel using an atomic force microscope. The morphology, phase distribution, and tribological behavior were studied under an applied electrical potential. It was found that the increase in electrical potential resulted in reduction of friction and pull-off force (adhesion), which is attributed to the real contact area change. Results indicated that the nanoporous structured Ni enables the control of friction and adhesion, which is beneficial for the design of nanoelectromechanical systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd