1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/4/10.1063/1.4822436
1.
1. M. Devoret and J. M. Martinis, Quantum Inf. Process. 3, 163203 (2004).
http://dx.doi.org/10.1007/s11128-004-3101-5
2.
2. M. Ansmann, H. Wang, R. C. Bialczak, M. Hofheinz, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland, and J. M. Martinis, Nature (London) 461, 504506 (2009).
http://dx.doi.org/10.1038/nature08363
3.
3. M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, Nature (London) 467, 570573 (2010).
http://dx.doi.org/10.1038/nature09418
4.
4. M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, Science 313, 14231425 (2006).
http://dx.doi.org/10.1126/science.1130886
5.
5. M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, H. Wang, J. M. Martinis, and A. N. Cleland, Nature (London) 454, 310314 (2008).
http://dx.doi.org/10.1038/nature07136
6.
6. M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, Nature (London) 459, 546 (2009).
http://dx.doi.org/10.1038/nature08005
7.
7. E. Lucero, M. Hofheinz, M. Ansmann, R. C. Bialczak, N. Katz, M. Neeley, A. D. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Phys. Rev. Lett. 100, 247001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.247001
8.
8. J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu, Phys. Rev. Lett. 95, 210503 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.210503
9.
9. W. A. Phillips, Rep. Prog. Phys. 50, 1657 (1987).
http://dx.doi.org/10.1088/0034-4885/50/12/003
10.
10. J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. LeDuc, Appl. Phys. Lett. 92, 152505 (2008).
http://dx.doi.org/10.1063/1.2906373
11.
11. J. Gao, J. Zmuidzinas, B. A. Mazin, H. G. LeDuc, and P. K. Day, Appl. Phys. Lett. 90, 102507 (2007).
http://dx.doi.org/10.1063/1.2711770
12.
12. A. D. O’Connell, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, C. McKenney, M. Neeley, H. Wang, E. M. Weig, A. N. Cleland, and J. M. Martinis, Appl. Phys. Lett. 92, 112903 (2008).
http://dx.doi.org/10.1063/1.2898887
13.
13. H. Paik and K. D. Osborn, Appl. Phys. Lett. 96, 072505 (2010).
http://dx.doi.org/10.1063/1.3309703
14.
14. S. Oh, K. Cicak, J. S. Kline, M. A. Sillanpää, K. D. Osborn, J. D. Whittaker, R. W. Simmonds, and D. P. Pappas, Phys. Rev. B 74, 100502 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.100502
15.
15. M. P. Weides, J. S. Kline, M. R. Vissers, M. O. Sandberg, D. S. Wisbey, B. R. Johnson, T. A. Ohki, and D. P. Pappas, Appl. Phys. Lett. 99, 262502 (2011).
http://dx.doi.org/10.1063/1.3672000
16.
16. Y. Nakamura, H. Terai, K. Inomata, T. Yamamoto, W. Qiu, and Z. Wang, Appl. Phys. Lett. 99, 212502 (2011).
http://dx.doi.org/10.1063/1.3663539
17.
17. M. Steffen, M. Ansmann, R. McDermott, N. Katz, R. C. Bialczak, E. Lucero, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, Phys. Rev. Lett. 97, 050502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.050502
18.
18. S. Oh, D. A. Hite, K. Cicak, K. D. Osborn, R. W. Simmonds, R. McDermott, K. B. Cooper, M. Steffen, J. M. Martinis, and D. P. Pappas, Thin Solid Films 496, 389394 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.09.091
19.
19. H. Wang, M. Hofheinz, J. Wenner, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, A. N. Cleland, and J. M. Martinis, Appl. Phys. Lett. 95, 233508 (2009).
http://dx.doi.org/10.1063/1.3273372
20.
20. C. M. Folkman, J. Podkaminer, K-H. Cho, and C. B. Eom, “Growth of metal/oxide epitaxial heterostructures using PLD and magnetron sputtering with in situ RHEED” (unpublished).
21.
21. A. J. H. Rijnders, G. Koster, D. H. A. Blank, and H. Rogalla, Appl. Phys. Lett. 70, 1888 (1997).
http://dx.doi.org/10.1063/1.118687
22.
22. P. E. Frieberthauser and H. A. Notarys, J. Vac. Sci. Technol. 7, 485 (1970).
http://dx.doi.org/10.1116/1.1315371
23.
23. X. Lai, C. C. Chusuei, K. Luo, Q. Guo, and D. W. Goodman, Chem. Phys. Lett. 330, 226 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)01099-X
24.
24. M. v. Schickfus and S. Hunklinger, Phys. Lett. A 64, 144 (1977).
http://dx.doi.org/10.1016/0375-9601(77)90558-8
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4822436
Loading
/content/aip/journal/aplmater/1/4/10.1063/1.4822436
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/4/10.1063/1.4822436
2013-10-21
2014-09-19

Abstract

We have characterized the microwave loss of high- parallel plate capacitors fabricated from thin-film Al/AlO/Re heterostructures on (0001) AlO substrates. The superconductor-insulator-superconductor trilayers were grown in a hybrid deposition system: the epitaxial Re base and polycrystalline Al counterelectrode layers were grown by sputtering, while the epitaxial AlO layer was grown by pulsed laser deposition. Structural analysis indicates a highly crystalline epitaxial AlO layer and sharp interfaces. The measured intrinsic (low-power, low-temperature) quality factor of the resonators is as high as 3 × 104. These results indicate that low-loss grown AlO is an attractive candidate dielectric for high-fidelity superconducting qubit circuits.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/4/1.4822436.html;jsessionid=50apa21n9pj2a.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/4/10.1063/1.4822436&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4822436
10.1063/1.4822436
SEARCH_EXPAND_ITEM