Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/1/4/10.1063/1.4822437
1.
1. G. Moore, Proc. IEEE 86, 82 (1998).
http://dx.doi.org/10.1109/JPROC.1998.658762
2.
2. P. Chidambaram, C. Bowen, S. Chakravarthi, C. Machala, and R. Wise, IEEE Trans. Electron Devices 53, 944 (2006).
http://dx.doi.org/10.1109/TED.2006.872912
3.
3. K. Maex, M. Baklanov, D. Shamiryan, F. Iacopi, S. Brongersma, and Z. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003).
http://dx.doi.org/10.1063/1.1567460
4.
4. I. Suni and B. Du, IEEE Trans. Semicond. Manuf. 18, 341 (2005).
http://dx.doi.org/10.1109/TSM.2005.852091
5.
5. G. Wilk, R. Wallace, and J. Anthony, J. Appl. Phys. 89, 5243 (2001).
http://dx.doi.org/10.1063/1.1361065
6.
6. E. Vogel, Nat. Nanotechnol. 2, 25 (2007).
http://dx.doi.org/10.1038/nnano.2006.142
7.
7. A. I. A. Cunha, M. Schneider, and C. Galup-Montoro, IEEE J. Solid-State Circuits 33, 1510 (1998).
http://dx.doi.org/10.1109/4.720397
8.
8. K. Kuhn, Microelectron. Eng. 88, 1044 (2011).
http://dx.doi.org/10.1016/j.mee.2011.03.163
9.
9. X. Sun, G. Calebotta, B. Yu, G. Selvaduray, and M. Meyyappan, J. Vac. Sci. Technol. B 25, 415 (2007).
http://dx.doi.org/10.1116/1.2713407
10.
10. A. Franklin, M. Luisier, S. Han, G. Tulevski, C. Breslin, L. Gignac, M. Lundstrom, and W. Haensch, Nano Lett. 12, 758 (2012).
http://dx.doi.org/10.1021/nl203701g
11.
11. K. Novoselov, V. Fal'ko, L. Colombo, P. Gellert, M. Schwab, and K. Kim, Nature (London) 490, 192 (2012).
http://dx.doi.org/10.1038/nature11458
12.
12. H. Dosch, Appl. Surf. Sci. 182, 192 (2001).
http://dx.doi.org/10.1016/S0169-4332(01)00426-3
13.
13. B. Ketterer, E. Uccelli, and A. Morral, Nanoscale 4, 1789 (2012).
http://dx.doi.org/10.1039/c2nr11910b
14.
14. B. Daly, S. Bailey, R. Sooryakumar, and S. King, J. Nanophotonics 7, 073094 (2013).
http://dx.doi.org/10.1117/1.JNP.7.073094
15.
15. International Technology Roadmap for Semiconductors (ITRS): 2011 (Semiconductor Industry Association, San Jose, CA, 2011), see http://www.itrs.net/Links/2011ITRS/Home2011.htm.
16.
16. S. Pavunny, R. Thomas, A. Kumar, E. Fachini, and R. Katiyar, J. Appl. Phys. 111, 044106 (2012).
http://dx.doi.org/10.1063/1.3688256
17.
17. Y. Xiong, H. Tu, J. Du, X. Zhang, D. Chen, and W. Wang, Appl. Phys. Lett. 98, 082906 (2011).
http://dx.doi.org/10.1063/1.3556652
18.
18. R. Dennard, F. Gaensslen, H. Yu, V. Rideout, E. Bassous, and A. LeBlanc, IEEE J. Solid-State Circuits 9, 256 (1974).
http://dx.doi.org/10.1109/JSSC.1974.1050511
19.
19. J. Robertson, Rep. Prog. Phys. 69, 327 (2006).
http://dx.doi.org/10.1088/0034-4885/69/2/R02
20.
20. M. Heyns and W. Tsai, MRS Bull. 34, 485 (2009).
http://dx.doi.org/10.1557/mrs2009.136
21.
21. S. Datta, A. Thathachary, L. Liu, E. Hwang, A. Agrawal, and N. Agrawal, ECS Trans. 53, 3 (2013).
http://dx.doi.org/10.1149/05303.0003ecst
22.
22. M. Hudait, ECS Trans. 45, 581 (2012).
http://dx.doi.org/10.1149/1.3700922
23.
23. K. Jones, A. Lind, C. Hatem, S. Moffatt, and M. Ridgway, ECS Trans. 53, 97 (2013).
http://dx.doi.org/10.1149/05303.0097ecst
24.
24. G. He, X. Chen, and Z. Sun, Surf. Sci. Rep. 68, 68 (2013).
http://dx.doi.org/10.1016/j.surfrep.2013.01.002
25.
25. P. Ye, J. Vac. Sci. Technol. A 26, 697 (2008).
http://dx.doi.org/10.1116/1.2905246
26.
26. J. del Alamo, Nature (London) 479, 317 (2011).
http://dx.doi.org/10.1038/nature10677
27.
27. J. Yota, J. Electrochem. Soc. 156, G173 (2009).
http://dx.doi.org/10.1149/1.3205868
28.
28. R. Hobbs, N. Petkov, and J. Holmes, Chem. Mater. 24, 1975 (2012).
http://dx.doi.org/10.1021/cm300570n
29.
29. P. Padova, O. Kubo, B. Olivieri, C. Quaresima, T. Nakayama, M. Aono, and G. Le Lay, Nano Lett. 12, 5500 (2012).
http://dx.doi.org/10.1021/nl302598x
30.
30. E. Bianco, S. Butler, S. Jiang, O. Restrepo, W. Windl, and J. Goldberger, ACS Nano 7, 4414 (2013).
http://dx.doi.org/10.1021/nn4009406
31.
31. M. Cantoro, G. Brammertz, O. Richard, H. Bender, F. Clemente, M. Leys, S. Degroote, M. Caymax, M. Heyns, and S. De Gendt, J. Electrochem. Soc. 156, H860 (2009).
http://dx.doi.org/10.1149/1.3222852
32.
32. K. Kim, J. Choi, T. Kim, S. Cho, and H. Chung, Nature (London) 479, 338 (2011).
http://dx.doi.org/10.1038/nature10680
33.
33. S. Butler, S. Hollen, L. Cao, J. Gupta, H. Gutierrez, T. Heinz, S. Hong, J. Huang, A. Ismach, E. Johnston-Halperin, M. Kuno, V. Plashnitsa, R. Robinson, R. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. Spencer, M. Terrones, W. Windl, and J. Goldberger, ACS Nano 7, 2898 (2013).
http://dx.doi.org/10.1021/nn400280c
34.
34. M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 3766 (2013).
http://dx.doi.org/10.1021/cr300263a
35.
35. G. Gao, W. Gao, E. Cannuccia, J. Taha-Tijerina, L. Balicas, A. Mathkar, T. Narayanan, Z. Liu, B. Gupta, J. Peng, Y. Yin, A. Rubio, and P. Ajayan, Nano Lett. 12, 3518 (2012).
http://dx.doi.org/10.1021/nl301061b
36.
36. A. Venugopal, L. Columbo, and E. Vogel, Solid State Commun. 152, 1311 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.04.042
37.
37. R. Wang, H. Liu, R. Huang, J. Zhuge, L. Zhang, D. Kim, X. Zhang, D. Park, and Y. Wang, IEEE Trans. Electron Devices 55, 2960 (2008).
http://dx.doi.org/10.1109/TED.2008.2005152
38.
38. Y. Ahn, H. Kim, Y. Kim, Y. Yi, and S. Kim, Appl. Phys. Lett. 102, 091602 (2013).
http://dx.doi.org/10.1063/1.4794900
39.
39. V. Zhirnov, J. Hutchby, G. Bourianoff, and J. Brewer, IEEE Circuits Devices Mag. 21, 37 (2005).
http://dx.doi.org/10.1109/MCD.2005.1438811
40.
40. S. Sugahara and J. Nitta, Proc. IEEE 98, 2124 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2064272
41.
41. T. Jungwirth, J. Wunderlich, and K. Olejnik, Nature Mater. 11, 382 (2012).
http://dx.doi.org/10.1038/nmat3279
42.
42. T. Kawahara, K. Ito, R. Takemura, and H. Ohno, Microelectron. Reliab. 52, 613 (2012).
http://dx.doi.org/10.1016/j.microrel.2011.09.028
43.
43. H. Jang, O. Kirillov, O. Jurchescu, and C. Richter, Appl. Phys. Lett. 100, 043510 (2012).
http://dx.doi.org/10.1063/1.3679114
44.
44. C. Hill, W. Hendren, R. Bowman, P. McGeehin, M. Gubbins, and V. Venugopal, Meas. Sci. Technol. 24, 045601 (2013).
http://dx.doi.org/10.1088/0957-0233/24/4/045601
45.
45. K. Martens, I. Radu, S. Mertens, X. Shi, L. Nyns, S. Cosemans, P. Favia, H. Bender, T. Conard, M. Schaekers, S. De Gendt, V. Afanas'ev, J. Kittl, M. Heyns, and M. Jurczak, J. Appl. Phys. 112, 124501 (2012).
http://dx.doi.org/10.1063/1.4767473
46.
46. R. Farshchi and M. Ramsteiner, J. Appl. Phys. 113, 191101 (2013).
http://dx.doi.org/10.1063/1.4802504
47.
47. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140445
48.
48. W. Eerenstein, N. Mathur, and J. Scott, Nature (London) 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
49.
49. P. Stoliar, L. Cario, E. Janod, B. Corraze, C. Guillot-Deudon, S. Salmon-Bourmand, V. Guiot, J. Tranchant, and M. Rozenberg, Adv. Mater. 25, 3222 (2013).
http://dx.doi.org/10.1002/adma.201301113
50.
50. E. Morosan, D. Natelson, A. Nevidomskyy, and Q. Si, Adv. Mater. 24, 4896 (2012).
http://dx.doi.org/10.1002/adma.201202018
51.
51. I. Appelbaum, B. Huang, and D. Monsma, Nature (London) 447, 295 (2007).
http://dx.doi.org/10.1038/nature05803
52.
52. M. Guimaraes, A. Veligura, P. Zomer, T. Maassen, I. Vera-Marun, N. Tombros, and B. van Wees, Nano Lett. 12, 3512 (2012).
http://dx.doi.org/10.1021/nl301050a
53.
53. K. Chesnel, J. Nelson, B. Wilcken, and S. Kevan, J. Synchrotron Radiat. 19, 293 (2012).
http://dx.doi.org/10.1107/S0909049512008047
54.
54. H. Park, J. Baskin, and A. Zewail, Nano Lett. 10, 3796 (2010).
http://dx.doi.org/10.1021/nl102861e
55.
55. P. Chureemart, R. Cuadrado, I. D'Amico, and R. Chantrell, Phys. Rev. B 87, 195310 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.195310
56.
56. A. Vedyaev, N. Ryzhanova, N. Strelkov, M. Chshiev, and B. Dieny, J. Appl. Phys. 107, 09C720 (2010).
http://dx.doi.org/10.1063/1.3355999
57.
57. G. Tatara and H. Kohno, Phys. Rev. Lett. 92, 086601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.086601
58.
58. G. Schmidt, D. Ferrand, L. Molenkamp, A. Filip, and B. van Wees, Phys. Rev. B 62, R4790 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R4790
59.
59. D. Carlton, N. Emley, E. Tuchfeld, and J. Bokor, Nano Lett. 8, 4173 (2008).
http://dx.doi.org/10.1021/nl801607p
60.
60. B. Aguilar, O. Navarro, and M. Avignon, Europhys. Lett. 88, 67003 (2009).
http://dx.doi.org/10.1209/0295-5075/88/67003
61.
61. Y. Zhu, Q. Wang, L. Zhao, B. Teng, W. Lu, and Y. Han, Chem. Mater. 24, 3269 (2012).
http://dx.doi.org/10.1021/cm301828n
62.
62. S. Hashimoto, A. Tanaka, A. Murata, and T. Sakurada, Surf. Sci. 556, 22 (2004).
http://dx.doi.org/10.1016/j.susc.2004.03.002
63.
63. H. Akinaga and H. Shima, Proc. IEEE 98, 2237 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2070830
64.
64. D. Strukov and H. Kohlstedt, MRS Bull. 37, 108 (2012).
http://dx.doi.org/10.1557/mrs.2012.2
65.
65. R. Waser, R. Dittmann, G. Staikov, and K. Szor, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
66.
66. V. Pott, R. Vaddi, G. Chua, J. Lin, and T. Kim, IEEE Electron Device Lett. 33, 1207 (2012).
http://dx.doi.org/10.1109/LED.2012.2201440
67.
67. Y. Tian, S. Bakaul, and T. Wu, Nanoscale 4, 1529 (2012).
http://dx.doi.org/10.1039/c2nr11767c
68.
68. N. Tsutsumi, X. Bai, and W. Sakai, AIP Adv. 2, 012154 (2012).
http://dx.doi.org/10.1063/1.3691825
69.
69. M. Ratner, Nat. Nanotechnol. 8, 378 (2013).
http://dx.doi.org/10.1038/nnano.2013.110
70.
70. I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono, and R. Waser, Nature Mater. 11, 530 (2012).
http://dx.doi.org/10.1038/nmat3307
71.
71. G. Solomon, C. Herrmann, T. Hansen, V. Mujica, and M. Ratner, Nat. Chem. 2, 223 (2010).
http://dx.doi.org/10.1038/nchem.546
72.
72. T. Breuer, U. Kerst, C. Boit, E. Langer, H. Ruelke, and A. Fissel, J. Appl. Phys. 112, 124103 (2012).
http://dx.doi.org/10.1063/1.4768918
73.
73. D. Hondongwa, L. Olasov, B. Daly, and S. King, Thin Solid Films 519, 7895 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.05.014
74.
74. A. Volinsky, J. Vella, and W. Gerberich, Thin Solid Films 429, 201 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00406-1
75.
75. D. Josell, S. Brongersma, and Z. Tokei, Annu. Rev. Mater. Sci. 39, 231 (2009).
http://dx.doi.org/10.1146/annurev-matsci-082908-145415
76.
76. T. Yamada, N. Makiomoto, A. Sekiguchi, Y. Yamamoto, K. Kobashi, Y. Hayamizu, Y. Yomogida, H. Tanaka, H. Shima, H. Akinaga, D. Futaba, and K. Hata, Nano Lett. 12, 4540 (2012).
http://dx.doi.org/10.1021/nl3016472
77.
77. X. Chen, D. Akinwande, K. Lee, G. Close, S. Yasuda, B. Paul, S. Fujita, J. Kong, and H. Wong, IEEE Trans. Electron Devices 57, 3137 (2010).
http://dx.doi.org/10.1109/TED.2010.2069562
78.
78. M. Gungor, J. Watkins, and D. Maroudas, Appl. Phys. Lett. 98, 121902 (2011).
http://dx.doi.org/10.1063/1.3567537
79.
79. M. Panzer and K. Goodson, J. Appl. Phys. 103, 094301 (2008).
http://dx.doi.org/10.1063/1.2903519
80.
80. C. Anghel, P. Chilagani, A. Amara, and A. Vladimirescu, Appl. Phys. Lett. 96, 122104 (2010).
http://dx.doi.org/10.1063/1.3367880
81.
81. F. Irrera, G. Puzzilli, L. Ricci, F. Russo, and F. Stirpe, J. Vac. Sci. Technol. B 27, 517 (2009).
http://dx.doi.org/10.1116/1.3074346
82.
82. K. Tu, Microelectron. Reliab. 51, 517 (2011).
http://dx.doi.org/10.1016/j.microrel.2010.09.031
83.
83. T. Osborn, A. He, N. Galiba, and P. Kohl, J. Electrochem. Soc. 155, D308 (2008).
http://dx.doi.org/10.1149/1.2839007
84.
84. S. Lai, J. Guo, V. Petrova, G. Ramanath, and L. Allen, Phys. Rev. Lett. 77, 99 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.99
85.
85. L. Aryasomayajula and K. Wolter, J. Nanotechnol. 2013, 296517 (2013).
http://dx.doi.org/10.1155/2013/296517
86.
86. M. Erinc, M. van Dijk, and V. Kouznetsova, Comput. Mater. Sci. 66, 50 (2013).
http://dx.doi.org/10.1016/j.commatsci.2012.06.012
87.
87. A. Mallik, W. Vansumere, J. Ryckaert, A. Mercha, N. Horiguchi, S. Demuynck, J. Bommels, T. Zsolt, G. Vandenberghe, K. Ronse, A. Thean, D. Verkest, H. Lebon, and A. Steegen, Proc. SPIE 8679, 86792Y (2013).
http://dx.doi.org/10.1117/12.2011528
88.
88. S. Yamauchi, A. Hara, K. Oyama, S. Natori, and M. Yamato, Proc. SPIE 8682, 86821D (2013).
http://dx.doi.org/10.1117/12.2011953
89.
89. K. Ban, J. Heo, H. Shim, M. Park, K. Lee, S. Koo, J. Kim, C. Bok, M. Kim, and H. Kang, Proc. SPIE 8322, 83221A (2012).
http://dx.doi.org/10.1117/12.916119
90.
90. W. Gladfelter, Chem. Mater. 5, 1372 (1993).
http://dx.doi.org/10.1021/cm00034a004
91.
91. P. Klapetek, L. Picco, O. Payton, A. Yacoot, and M. Miles, Meas. Sci. Technol. 24, 025006 (2013).
http://dx.doi.org/10.1088/0957-0233/24/2/025006
92.
92. P. Witham and E. Sanchez, J. Microsc. 248, 223 (2012).
http://dx.doi.org/10.1111/j.1365-2818.2012.03665.x
93.
93. P. Witham and E. Sanchez, Rev. Sci. Instrum. 82, 103705 (2011).
http://dx.doi.org/10.1063/1.3650719
94.
94. H. Kim, S. Park, and W. Hinsberg, Chem. Rev. 110, 146 (2010).
http://dx.doi.org/10.1021/cr900159v
95.
95. C. Black, R. Ruiz, G. Breyta, J. Cheng, M. Colbum, K. Guarini, H. Kim, and Y. Zhang, IBM J. Res. Dev. 51, 605 (2007).
http://dx.doi.org/10.1147/rd.515.0605
96.
96. D. Herr, J. Mater. Res. 26, 122 (2011).
http://dx.doi.org/10.1557/jmr.2010.74
97.
97. R. Ruiz, L. Wan, J. Lille, K. Patel, E. Dobisz, D. Johnston, K. Kisslinger, and C. Black, J. Vac. Sci. Technol. B 30, 06F202 (2012).
http://dx.doi.org/10.1116/1.4758773
98.
98. Y. Jung, J. Chang, E. Verploegen, K. Berggren, and C. Ross, Nano Lett. 10, 1000 (2010).
http://dx.doi.org/10.1021/nl904141r
99.
99. A. Horvat, G. Sevink, A. Zvelindovsky, A. Krekhov, and L. Tsarkova, ACS Nano 2, 1143 (2008).
http://dx.doi.org/10.1021/nn800181m
100.
100. C. Bencher, J. Smith, L. Miao, C. Cai, Y. Chen, J. Cheng, D. Sanders, and M. Tjio, Proc. SPIE 7970, 79700F (2011).
http://dx.doi.org/10.1117/12.881293
101.
101. A. Dazzi, C. Prater, Q. Hu, B. Chase, J. Rabolt, and C. Marcott, Appl. Spectosc. 66, 1365 (2012).
http://dx.doi.org/10.1366/12-06804
102.
102. G. Perera, C. Wang, M. Doxastakis, R. Kline, W. Wu, A. Bosse, and G. Stein, ACS Macro Lett. 1, 1244 (2012).
http://dx.doi.org/10.1021/mz300331k
103.
103. M. Scott, C. Chen, M. Mecklenburg, C. Zhu, R. Xu, P. Ercius, U. Dahmen, B. Regan, and J. Miao, Nature (London) 483, 444 (2012).
http://dx.doi.org/10.1038/nature10934
104.
104. K. Jarausch, P. Thomas, D. Leonard, R. Twesten, and C. Booth, Ultramicroscopy 109, 326 (2009).
http://dx.doi.org/10.1016/j.ultramic.2008.12.012
105.
105. C. Settens, B. Bunday, B. Thiel, R. Kline, D. Sunday, C. Wang, W. Wu, and R. Matyi, Proc. SPIE 8681, 86810L (2013).
http://dx.doi.org/10.1117/12.2012019
106.
106. G. Servanton, R. Pantel, M. Juhel, and F. Bertin, Micron 40, 543 (2009).
http://dx.doi.org/10.1016/j.micron.2009.04.003
107.
107. V. Holmberg, J. Helps, K. Mkhoyan, and D. Norris, Chem. Mater. 25, 1332 (2013).
http://dx.doi.org/10.1021/cm400004x
108.
108. G. Klimeck and M. Luisier, Comput. Sci. Eng. 12, 28 (2010).
http://dx.doi.org/10.1109/MCSE.2010.32
109.
109. S. Mehrotra, S. Kim, T. Kubis, M. Povolotskyi, M. Lundstrom, and G. Klimeck, IEEE Trans. Electron Devices 60, 2171 (2013).
http://dx.doi.org/10.1109/TED.2013.2263806
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4822437
Loading