1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/1/4/10.1063/1.4822438
1.
1. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
2.
2. R. Waser and M. Aono, Nature Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
3.
3. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature (London) 453, 80 (2008).
http://dx.doi.org/10.1038/nature06932
4.
4. M. Sowinska, T. Bertaud, D. Walczyk, S. Thiess, M. A. Schubert, M. Lukosius, W. Drube, C. Walczyk, and T. Schroeder, Appl. Phys. Lett. 100, 233509 (2012).
http://dx.doi.org/10.1063/1.4728118
5.
5. J. P. Strachan, M. D. Pickett, J. J. Yang, S. Aloni, A. L. David Kilcoyne, G. Medeiros-Ribeiro, and R. Stanley Williams, Adv. Mater. 22, 3573 (2010).
http://dx.doi.org/10.1002/adma.201000186
6.
6. C. Lenser, A. Kuzmin, J. Purans, A. Kalinko, R. Waser, and R. Dittmann, J. Appl. Phys. 111, 076101 (2012).
http://dx.doi.org/10.1063/1.3699315
7.
7. K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Nature Mater. 5, 312 (2006).
http://dx.doi.org/10.1038/nmat1614
8.
8. J. P. Strachan, J. J. Yang, R. Münstermann, A. Scholl, G. Medeiros-Ribeiro, D. R. Stewart, and R. S. Williams, Nanotechnology 20, 485701 (2009).
http://dx.doi.org/10.1088/0957-4484/20/48/485701
9.
9. R. Dittmann, R. Muenstermann, I. Krug, D. Park, T. Menke, J. Mayer, A. Besmehn, F. Kronast, C. M. Schneider, and R. Waser, Proc. IEEE 100, 1979 (2012).
http://dx.doi.org/10.1109/JPROC.2012.2188771
10.
10. R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, Adv. Mater. 22, 4819 (2010).
http://dx.doi.org/10.1002/adma.201001872
11.
11. P. Guttmann, C. Bittencourt, S. Rehbein, P. Umek, X. Ke, G. Van Tendeloo, C. P. Ewels, and G. Schneider, Nat. Photonics 6, 25 (2012).
http://dx.doi.org/10.1038/NPHOTON.2011.268
12.
12. J. P. Strachan, G. Medeiros-Ribeiro, J. J. Yang, M.-X. Zhang, F. Miao, I. Goldfarb, M. Holt, V. Rose, and R. S. Williams, Appl. Phys. Lett. 98, 242114 (2011).
http://dx.doi.org/10.1063/1.3599589
13.
13. D. J. Keeble, S. Wicklein, L. Jin, C. L. Jia, W. Egger, and R. Dittmann, Phys. Rev. B 87, 195409 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.195409
14.
14. D. J. Keeble, S. Wicklein, R. Dittmann, L. Ravelli, R. A. Mackie, and W. Egger, Phys. Rev. Lett. 105, 226102 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.226102
15.
15.See supplementary material at http://dx.doi.org/10.1063/1.4822438 for details on PLD growth parameters and sample preparation. [Supplementary Material]
16.
16. S. Amelinckx, Handbook of Microscopy: Applications (VCH, 1997).
17.
17. L. Pellegrino, M. Biasotti, E. Bellingeri, C. Bernini, A. S. Siri, and D. Marré, Adv. Mater. 21, 2377 (2009).
http://dx.doi.org/10.1002/adma.200803360
18.
18. D. Weber, R. Vöfély, Y. Chen, Y. Mourzina, and U. Poppe, Thin Solid Films 533, 43 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.11.118
19.
19. X. D. Wu, S. R. Foltyn, R. C. Dye, Y. Coulter, and R. E. Muenchausen, Appl. Phys. Lett. 62, 2434 (1993).
http://dx.doi.org/10.1063/1.109388
20.
20. C. Lenser, Z. Connell, A. Kovács, R. Dunin-Borkowski, A. Köhl, R. Waser, and R. Dittmann, Appl. Phys. Lett. 102, 183504 (2013).
http://dx.doi.org/10.1063/1.4804364
21.
21. A. Koehl, D. Kajewski, J. Kubacki, C. Lenser, R. Dittmann, P. Meuffels, K. Szot, R. Waser, and J. Szade, Phys. Chem. Chem. Phys. 15, 8311 (2013).
http://dx.doi.org/10.1039/c3cp50272d
22.
22. M. Abbate, F. M. F. de Groot, J. C. Fuggle, A. Fujimori, Y. Tokura, Y. Fujishima, O. Strebel, M. Domke, G. Kaindl, J. van Elp, B. T. Thole, G. A. Sawatzky, M. Sacchi, and N. Tsuda, Phys. Rev. B 44, 5419 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.5419
23.
23. F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev. B 41, 928 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.928
24.
24. P. Krüger, Phys. Rev. B 81, 125121 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125121
25.
25. F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev. B 42, 5459 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.5459
26.
26. A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature (London) 419, 378 (2002).
http://dx.doi.org/10.1038/nature00977
27.
27. D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature (London) 430, 657 (2004).
http://dx.doi.org/10.1038/nature02756
28.
28. J.-S. Lee, Y. W. Xie, H. K. Sato, C. Bell, Y. Hikita, H. Y. Hwang, and C.-C. Kao, Nature Mater. 12, 703 (2013).
http://dx.doi.org/10.1038/nmat3674
29.
29. E. O. Filatova, A. A. Sokolov, Y. V. Egorova, A. S. Konashuk, O. Y. Vilkov, M. Gorgoi, and A. A. Pavlychev, J. Appl. Phys. 113, 224301 (2013).
http://dx.doi.org/10.1063/1.4809978
30.
30. V. E. Alexandrov, E. A. Kotomin, J. Maier, and R. A. Evarestov, Eur. Phys. J. B 72, 53 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00339-4
31.
31. G. van der Laan and I. W. Kirkman, J. Phys. Condens. Matter 4, 4189 (1992).
http://dx.doi.org/10.1088/0953-8984/4/16/019
32.
32. F. M. F. de Groot, M. O. Figueiredo, M. J. Basto, M. Abbate, H. Petersen, and J. C. Fuggle, Phys. Chem. Miner. 19, 140 (1992).
http://dx.doi.org/10.1007/BF00202101
33.
33. S. Menzel, B. Klopstra, C. Kügeler, U. Böttger, G. Staikov, and R. Waser, MRS Proceedings 1160, 1160H09 (2009).
http://dx.doi.org/10.1557/PROC-1160-H09-03
34.
34. K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, and R. Waser, Nanotechnology 22, 254001 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254001
35.
35. D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Nat. Nanotechnol. 5, 148 (2010).
http://dx.doi.org/10.1038/nnano.2009.456
36.
36. S. O. Kucheyev, T. van Buuren, T. F. Baumann, J. H. Satcher, T. M. Willey, R. W. Meulenberg, T. E. Felter, J. F. Poco, S. A. Gammon, and L. J. Terminello, Phys. Rev. B 69, 245102 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.245102
37.
37. E. Stoyanov, F. Langenhorst, and G. Steinle-Neumann, Am. Mineral. 92, 577 (2007).
http://dx.doi.org/10.2138/am.2007.2344
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4822438
Loading
/content/aip/journal/aplmater/1/4/10.1063/1.4822438
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/4/10.1063/1.4822438
2013-10-01
2015-05-30

Abstract

Transmission X-ray microscopy is employed to detect nanoscale valence changes in resistive switching SrTiO thin film devices. By recording Ti L-edge spectra of samples in different resistive states, we could show that some spots with slightly distorted structure and a small reduction to Ti3+ are already present in the virgin films. In the ON-state, these spots are further reduced to Ti3+ to different degrees while the remaining film persists in the Ti4+ configuration. These observations are consistent with a self-accelerating reduction within pre-reduced extended growth defects.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/4/1.4822438.html;jsessionid=apwb1ggogq51.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/4/10.1063/1.4822438&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Evidence for multifilamentary valence changes in resistive switching SrTiO3 devices detected by transmission X-ray microscopy
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4822438
10.1063/1.4822438
SEARCH_EXPAND_ITEM