Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/1/4/10.1063/1.4824038
1.
1. F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, Nat. Nanotechnol. 6, 179 (2011).
http://dx.doi.org/10.1038/nnano.2011.6
2.
2. P. Blake, R. Yang, S. V. Morozov, F. Schedin, L. A. Ponomarenko, A. A. Zhukov, R. R. Nair, I. V. Grigorieva, K. S. Novoselov, and A. K. Geim, Solid State Commun. 149, 1068 (2009).
http://dx.doi.org/10.1016/j.ssc.2009.02.039
3.
3. R. Murali, Y. X. Yang, K. Brenner, T. Beck, and J. D. Meindl, Appl. Phys. Lett. 94, 243114 (2009).
http://dx.doi.org/10.1063/1.3147183
4.
4. F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Nano Lett. 10, 715 (2010).
http://dx.doi.org/10.1021/nl9039636
5.
5. A. Venugopal, L. Colombo, and E. M. Vogel, Appl. Phys. Lett. 96, 013512 (2010).
http://dx.doi.org/10.1063/1.3290248
6.
6. K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, Appl. Phys. Lett. 97, 143514 (2010).
http://dx.doi.org/10.1063/1.3491804
7.
7. S. Russo, M. F. Craciun, M. Yamamoto, A. F. Morpurgo, and S. Tarucha, Physica E (Amsterdam) 42, 677 (2010).
http://dx.doi.org/10.1016/j.physe.2009.11.080
8.
8. S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, Nano Lett. 12, 3887 (2012).
http://dx.doi.org/10.1021/nl300266p
9.
9. F. N. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, Nano Lett. 9, 1039 (2009).
http://dx.doi.org/10.1021/nl8033812
10.
10. E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, Nat. Nanotechnol. 3, 486 (2008).
http://dx.doi.org/10.1038/nnano.2008.172
11.
11. J. Park, Y. H. Ahn, and C. Ruiz-Vargas, Nano Lett. 9, 1742 (2009).
http://dx.doi.org/10.1021/nl8029493
12.
12. T. Mueller, F. Xia, M. Freitag, J. Tsang, and P. Avouris, Phys. Rev. B 79, 245430 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245430
13.
13. R. S. Singh, V. Nalla, W. Chen, W. Ji, and A. T. S. Wee, Appl. Phys. Lett. 100, 093116 (2012).
http://dx.doi.org/10.1063/1.3692107
14.
14. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026803
15.
15. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. E. Byun, P. Kim, I. Yoo, H. J. Chung, and K. Kim, Science 336, 1140 (2012).
http://dx.doi.org/10.1126/science.1220527
16.
16. L. Zhang, Y. Ye, D. Cheng, H. Pan, and J. Zhu, J. Phys. Chem. C 117, 9259 (2013).
http://dx.doi.org/10.1021/jp401290f
17.
17. B. Rousseau and H. Estrade-Szwarckopf, Solid State Commun. 126, 583 (2003).
http://dx.doi.org/10.1016/S0038-1098(03)00258-8
18.
18. A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Phys. Rev. Lett. 101, 157601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.157601
19.
19. P. Sutter, J. T. Sadowski, and E. Sutter, Phys. Rev. B 80, 245411 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245411
20.
20. I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Phys. Rev. Lett. 102, 056808 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.056808
21.
21. A. L. Walter, S. Nie, A. Bostwick, K. S. Kim, L. Moreschini, Y. J. Chang, D. Innocenti, K. Horn, K. F. McCarty, and E. Rotenberg, Phys. Rev. B 84, 195443 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195443
22.
22. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).
http://dx.doi.org/10.1038/nnano.2008.67
23.
23. C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. S. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, Nature (London) 471, 617 (2011).
http://dx.doi.org/10.1038/nature09866
24.
24. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.166802
25.
25. H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, ACS Nano 5, 9854 (2011).
http://dx.doi.org/10.1021/nn203506n
26.
26. C. Gong, D. Hinojos, W. C. Wang, N. Nijem, B. Shan, R. M. Wallace, K. J. Cho, and Y. J. Chabal, ACS Nano 6, 5381 (2012).
http://dx.doi.org/10.1021/nn301241p
27.
27. M. Batzill, Surf. Sci. Rep. 67, 83 (2012).
http://dx.doi.org/10.1016/j.surfrep.2011.12.001
28.
28. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. Banerjee, L. Colombo, and R. Ruoff, Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
29.
29. R. Addou, A. Dahal, and M. Batzill, Surf. Sci. 606, 1108 (2012).
http://dx.doi.org/10.1016/j.susc.2012.03.009
30.
30. A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, and N. Martensson, Phys. Rev. B 78, 073401 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.073401
31.
31. H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
http://dx.doi.org/10.1063/1.323539
32.
32. S. Halas, Mater. Sci. (Poland) 24, 951 (2006).
33.
33. R. Addou, A. Dahal, and M. Batzill, Nat. Nanotechnol. 8, 41 (2013).
http://dx.doi.org/10.1038/nnano.2012.217
34.
34. V. S. Fomenko, Handbook of Thermionic Properties (Plenum Press Data Division, New York, 1966).
35.
35. Y. Vaynzof, T. J. Dennes, J. Schwartz, and A. Kahn, Appl. Phys. Lett. 93, 103305 (2008).
http://dx.doi.org/10.1063/1.2980425
36.
36. A. Borodin and M. Reichling, Phys. Chem. Chem. Phys. 13, 15442 (2011).
http://dx.doi.org/10.1039/c0cp02835e
37.
37. K. Onda, B. Li, and H. Petek, Phys. Rev. B 70, 045415 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.045415
38.
38. H. Coy-Diaz, R. Addou, and M. Batzill, “The Interface between Graphene and SrTiO3(001) Investigated by Scanning Tunneling Microscopy and Photoemission,” J. Phys. Chem. C (published online).
http://dx.doi.org/10.1021/jp4086156
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4824038
Loading
/content/aip/journal/aplmater/1/4/10.1063/1.4824038
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/4/10.1063/1.4824038
2013-10-03
2016-12-10

Abstract

We show that for metal/graphene/dielectric sandwich structures, charge doping in graphene depends on both the work functions of the metal and the dielectric. Using C-1s core level photoemission spectroscopy we determine the charge doping in graphene for one-sided metal contacts as well as for sandwich structures that are commonly used in graphene devices. The measured Fermi-level shifts are in good agreement with a model that predicts that the difference in charge doping for graphene on a metal compared to graphene sandwiched between a metal and dielectric is given by ΔE ≈ 0.44 × √(Φ − Φ).

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/4/1.4824038.html;jsessionid=KgS32Z1vA9B-6ur1uadSMSb2.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/4/10.1063/1.4824038&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/1/4/10.1063/1.4824038&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/1/4/10.1063/1.4824038'
Top,Right1,Right2,Right3,