Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, Nat. Nanotechnol. 6, 179 (2011).
2. P. Blake, R. Yang, S. V. Morozov, F. Schedin, L. A. Ponomarenko, A. A. Zhukov, R. R. Nair, I. V. Grigorieva, K. S. Novoselov, and A. K. Geim, Solid State Commun. 149, 1068 (2009).
3. R. Murali, Y. X. Yang, K. Brenner, T. Beck, and J. D. Meindl, Appl. Phys. Lett. 94, 243114 (2009).
4. F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Nano Lett. 10, 715 (2010).
5. A. Venugopal, L. Colombo, and E. M. Vogel, Appl. Phys. Lett. 96, 013512 (2010).
6. K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, Appl. Phys. Lett. 97, 143514 (2010).
7. S. Russo, M. F. Craciun, M. Yamamoto, A. F. Morpurgo, and S. Tarucha, Physica E (Amsterdam) 42, 677 (2010).
8. S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, Nano Lett. 12, 3887 (2012).
9. F. N. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, Nano Lett. 9, 1039 (2009).
10. E. J. H. Lee, K. Balasubramanian, R. T. Weitz, M. Burghard, and K. Kern, Nat. Nanotechnol. 3, 486 (2008).
11. J. Park, Y. H. Ahn, and C. Ruiz-Vargas, Nano Lett. 9, 1742 (2009).
12. T. Mueller, F. Xia, M. Freitag, J. Tsang, and P. Avouris, Phys. Rev. B 79, 245430 (2009).
13. R. S. Singh, V. Nalla, W. Chen, W. Ji, and A. T. S. Wee, Appl. Phys. Lett. 100, 093116 (2012).
14. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).
15. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. E. Byun, P. Kim, I. Yoo, H. J. Chung, and K. Kim, Science 336, 1140 (2012).
16. L. Zhang, Y. Ye, D. Cheng, H. Pan, and J. Zhu, J. Phys. Chem. C 117, 9259 (2013).
17. B. Rousseau and H. Estrade-Szwarckopf, Solid State Commun. 126, 583 (2003).
18. A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Phys. Rev. Lett. 101, 157601 (2008).
19. P. Sutter, J. T. Sadowski, and E. Sutter, Phys. Rev. B 80, 245411 (2009).
20. I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Phys. Rev. Lett. 102, 056808 (2009).
21. A. L. Walter, S. Nie, A. Bostwick, K. S. Kim, L. Moreschini, Y. J. Chang, D. Innocenti, K. Horn, K. F. McCarty, and E. Rotenberg, Phys. Rev. B 84, 195443 (2011).
22. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).
23. C. F. Chen, C. H. Park, B. W. Boudouris, J. Horng, B. S. Geng, C. Girit, A. Zettl, M. F. Crommie, R. A. Segalman, S. G. Louie, and F. Wang, Nature (London) 471, 617 (2011).
24. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007).
25. H. G. Yan, F. N. Xia, W. J. Zhu, M. Freitag, C. Dimitrakopoulos, A. A. Bol, G. Tulevski, and P. Avouris, ACS Nano 5, 9854 (2011).
26. C. Gong, D. Hinojos, W. C. Wang, N. Nijem, B. Shan, R. M. Wallace, K. J. Cho, and Y. J. Chabal, ACS Nano 6, 5381 (2012).
27. M. Batzill, Surf. Sci. Rep. 67, 83 (2012).
28. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. Banerjee, L. Colombo, and R. Ruoff, Science 324, 1312 (2009).
29. R. Addou, A. Dahal, and M. Batzill, Surf. Sci. 606, 1108 (2012).
30. A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, and N. Martensson, Phys. Rev. B 78, 073401 (2008).
31. H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
32. S. Halas, Mater. Sci. (Poland) 24, 951 (2006).
33. R. Addou, A. Dahal, and M. Batzill, Nat. Nanotechnol. 8, 41 (2013).
34. V. S. Fomenko, Handbook of Thermionic Properties (Plenum Press Data Division, New York, 1966).
35. Y. Vaynzof, T. J. Dennes, J. Schwartz, and A. Kahn, Appl. Phys. Lett. 93, 103305 (2008).
36. A. Borodin and M. Reichling, Phys. Chem. Chem. Phys. 13, 15442 (2011).
37. K. Onda, B. Li, and H. Petek, Phys. Rev. B 70, 045415 (2004).
38. H. Coy-Diaz, R. Addou, and M. Batzill, “The Interface between Graphene and SrTiO3(001) Investigated by Scanning Tunneling Microscopy and Photoemission,” J. Phys. Chem. C (published online).

Data & Media loading...


Article metrics loading...



We show that for metal/graphene/dielectric sandwich structures, charge doping in graphene depends on both the work functions of the metal and the dielectric. Using C-1s core level photoemission spectroscopy we determine the charge doping in graphene for one-sided metal contacts as well as for sandwich structures that are commonly used in graphene devices. The measured Fermi-level shifts are in good agreement with a model that predicts that the difference in charge doping for graphene on a metal compared to graphene sandwiched between a metal and dielectric is given by ΔE ≈ 0.44 × √(Φ − Φ).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd