Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/1/4/10.1063/1.4824040
1.
1. S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, and R. A. J. Janssen, Nature Mater. 8(10), 818 (2009);
http://dx.doi.org/10.1038/nmat2533
1.B. A. Gregg, J. Phys. Chem. B 107(20), 4688 (2003);
http://dx.doi.org/10.1021/jp022507x
1.J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, Adv. Mater. 23(16), 1810 (2011).
http://dx.doi.org/10.1002/adma.201003991
2.
2. W. Zhang, R. Zhu, F. Li, Q. Wang, and B. Liu, J. Phys. Chem. C 115(14), 7038 (2011).
http://dx.doi.org/10.1021/jp1118597
3.
3. R. Zhu, C. Y. Jiang, B. Liu, and S. Ramakrishna, Adv. Mater. 21(9), 994 (2009).
http://dx.doi.org/10.1002/adma.200802388
4.
4. A. Abrusci, I. K. Ding, M. Al-Hashimi, T. Segal-Peretz, M. D. McGehee, M. Heeney, G. L. Frey, and H. J. Snaith, Energy Environ. Sci. 4(8), 3051 (2011).
http://dx.doi.org/10.1039/c1ee01135a
5.
5. W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Adv. Mater. 16(12), 1009 (2004);
http://dx.doi.org/10.1002/adma.200306659
5.P. A. van Hal, M. M. Wienk, J. M. Kroon, W. J. H. Verhees, L. H. Slooff, W. J. H. van Gennip, P. Jonkheijm, and R. A. J. Janssen, Adv. Mater. 15(2), 118 (2003);
http://dx.doi.org/10.1002/adma.200390022
5.T.-W. Zeng, Y.-Y. Lin, H.-H. Lo, C.-W. Chen, C.-H. Chen, S.-C. Liou, H.-Y. Huang, and W.-F. Su, Nanotechnology 17(21), 5387 (2006);
http://dx.doi.org/10.1088/0957-4484/17/21/017
5.M. Lira-Cantu and F. C. Krebs, Sol. Energy Mater. Sol. Cells 90(14), 2076 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.02.007
6.
6. S.-J. Moon, E. Baranoff, S. M. Zakeeruddin, C.-Y. Yeh, E. W.-G. Diau, M. Grätzel, and K. Sivula, Chem. Commun. 47(29), 8244 (2011);
http://dx.doi.org/10.1039/C1CC12251G
6.A. Abrusci, R. S. S. Kumar, M. Al Hashimi, M. Heeney, A. Petrozza, and H. J. Snaith, Adv. Funct. Mater. 21(13), 2571 (2011);
http://dx.doi.org/10.1002/adfm.201100048
6.Y. C. Huang, J. H. Hsu, Y. C. Liao, W. C. Yen, S. S. Li, S. T. Lin, C. W. Chen, and W. F. Su, J. Mater. Chem. 21, 44504456 (2011).
http://dx.doi.org/10.1039/C0JM03615C
7.
7. G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. 21(13), 1323 (2009);
http://dx.doi.org/10.1002/adma.200801283
7.G. Li, R. Zhu, and Y. Yang, Nat. Photonics 6(3), 153 (2012);
http://dx.doi.org/10.1038/nphoton.2012.11
7.G. Zhao, Y. He, and Y. Li, Adv. Mater. 22(39), 4355 (2010).
http://dx.doi.org/10.1002/adma.201001339
8.
8. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11(1), 15 (2001).
http://dx.doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
9.
9. S. Hugger, R. Thomann, T. Heinzel, and T. Thurn-Albrecht, Colloid Polym. Sci. 282(8), 932 (2004).
http://dx.doi.org/10.1007/s00396-004-1100-9
10.
10. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17(10), 1636 (2007).
http://dx.doi.org/10.1002/adfm.200600624
11.
11. M. Aryal, K. Trivedi, and W. C. Hu, ACS Nano 3(10), 3085 (2009).
http://dx.doi.org/10.1021/nn900831m
12.
12. E. V. Canesi, M. Binda, A. Abate, S. Guarnera, L. Moretti, V. D’Innocenzo, R. S. S. Kumar, C. Bertarelli, A. Abrusci, H. Snaith, A. Calloni, A. Brambilla, F. Ciccacci, S. Aghion, F. Moia, R. Ferragut, C. Melis, G. Malloci, A. Mattoni, G. Lanzani, and A. Petrozza, Energy Environ. Sci. 5(10), 9068 (2012).
http://dx.doi.org/10.1039/c2ee22212d
13.
13. G. Boschloo, L. Häggman, and A. Hagfeldt, J. Phys. Chem. B 110(26), 13144 (2006);
http://dx.doi.org/10.1021/jp0619641
13.R. Katoh, M. Kasuya, S. Kodate, A. Furube, N. Fuke, and N. Koide, J. Phys. Chem. C 113(48), 20738 (2009).
http://dx.doi.org/10.1021/jp906190a
14.
14. C. Goh, S. R. Scully, and M. D. McGehee, J. Appl. Phys. 101(11), 114503 (2007).
http://dx.doi.org/10.1063/1.2737977
15.
15. A. J. P. Carvalho and J. P. P. Ramalho, Appl. Surf. Sci. 256(17), 5365 (2010).
http://dx.doi.org/10.1016/j.apsusc.2009.12.081
16.
16. G. K. Mor, S. Kim, M. Paulose, O. K. Varghese, K. Shankar, J. Basham, and C. A. Grimes, Nano Lett. 9(12), 4250 (2009).
http://dx.doi.org/10.1021/nl9024853
17.
17. C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, Appl. Phys. Lett. 94, 043311 (2009).
http://dx.doi.org/10.1063/1.3076134
18.
18.See supplementary material at http://dx.doi.org/10.1063/1.4824040 for detailed experimental methods, JV characteristics, photoluminescence measurements, impedance spectroscopy fitting results, and PVD/PCD rates. [Supplementary Material]
19.
19. Y. Vaynzof, D. Kabra, L. H. Zhao, P. K. H. Ho, A. T. S. Wee, and R. H. Friend, Appl. Phys. Lett. 97(3), 033309 (2010).
http://dx.doi.org/10.1063/1.3464973
20.
20. J. Weickert, F. Auras, T. Bein, and L. Schmidt-Mende, J. Phys. Chem. C 115(30), 15081 (2011).
http://dx.doi.org/10.1021/jp203600z
21.
21.Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl]].
22.
22. G. Grancini, R. S. S. Kumar, A. Abrusci, H.-L. Yip, C.-Z. Li, A.-K. Y. Jen, G. Lanzani, and H. J. Snaith, Adv. Funct. Mater. 22(10), 2160 (2012).
http://dx.doi.org/10.1002/adfm.201102360
23.
23. H. J. Snaith, Energy Environ. Sci. 5(4), 6513 (2012).
http://dx.doi.org/10.1039/c2ee03429h
24.
24. G. Malloci, M. Binda, A. Petrozza, and A. Mattoni, J. Phys. Chem. C 117(27), 13894 (2013).
http://dx.doi.org/10.1021/jp4042759
25.
25. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258(5087), 1474 (1992);
http://dx.doi.org/10.1126/science.258.5087.1474
25.M. Hallermann, S. Haneder, and E. Da Como, Appl. Phys. Lett. 93(5), 053307 (2008);
http://dx.doi.org/10.1063/1.2969295
25.S. Sun, Z. Fan, Y. Wang, and J. Haliburton, J. Mater. Sci. 40(6), 1429 (2005);
http://dx.doi.org/10.1007/s10853-005-0579-x
25.W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295(5564), 2425 (2002).
http://dx.doi.org/10.1126/science.1069156
26.
26. F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, and J. Bisquert, Phys. Chem. Chem. Phys. 13(20), 9083 (2011).
http://dx.doi.org/10.1039/c0cp02249g
27.
27. F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin, and M. Grätzel, J. Am. Chem. Soc. 131(2), 558 (2009).
http://dx.doi.org/10.1021/ja805850q
28.
28. R. A. Street and M. Schoendorf, Phys. Rev. B 81 (20), 205307 (2010);
http://dx.doi.org/10.1103/PhysRevB.81.205307
28.P. P. Boix, G. Larramona, A. Jacob, B. Delatouche, I. Mora-Sero, and J. Bisquert, J. Phys. Chem. C 116(1), 1579 (2012);
http://dx.doi.org/10.1021/jp210002c
28.M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. De Boer, and P. W. M. Blom, Appl. Phys. Lett. 91, 263505 (2007);
http://dx.doi.org/10.1063/1.2821368
28.J. P. Gonzalez-Vazquez, G. Oskam, and J. A. Anta, J. Phys. Chem. C 116(43), 22687 (2012).
http://dx.doi.org/10.1021/jp306517g
29.
29. L. Luo, C. J. Lin, C. S. Hung, C. F. Lo, C. Y. Lin, and E. W. G. Diau, Phys. Chem. Chem. Phys. 12(40), 12973 (2010).
http://dx.doi.org/10.1039/c0cp00458h
30.
30. L. J. A. Koster, V. D. Mihailetchi, H. Xie, and P. W. M. Blom, Appl. Phys. Lett. 87, 203502 (2005);
http://dx.doi.org/10.1063/1.2130396
30.P. Schilinsky, C. Waldauf, and C. J. Brabec, Appl. Phys. Lett. 81(20), 3885 (2002);
http://dx.doi.org/10.1063/1.1521244
30.V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, and P. W. M. Blom, Adv. Funct. Mater. 16(5), 699 (2006).
http://dx.doi.org/10.1002/adfm.200500420
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4824040
Loading
/content/aip/journal/aplmater/1/4/10.1063/1.4824040
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/4/10.1063/1.4824040
2013-10-08
2016-09-30

Abstract

To unleash the full potential of hybrid solar cells, it is imperative to get significant photocurrent contribution from both the sensitizing dye and the polymeric hole transporter. Here we report on the interfacial modifier 4-mercaptopyridine (4-MP), which induces controlled orientation of poly(3-hexylthiophene) (P3HT), the most widely used hole transporting polymer for hybrid solar cells, at the interface. 4-MP optimizes the charge separating interface between P3HT and a squaraine dye-decorated TiO, inducing enhanced contribution to photocurrent generation by the polymer. In combination with 4--butylpyridine, which enhances the open circuit potential in dye-sensitized and hybrid solar cells but reduces the photocurrent, a synergistic effect is observed and it is possible to enhance both open circuit voltage and photocurrent simultaneously. Similar effects on device performance are also found for two other commonly used dye molecules, a fullerene derivative and a common indoline dye.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/4/1.4824040.html;jsessionid=wu338CkuFiUYFF1paGA8Nbqg.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/4/10.1063/1.4824040&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/1/4/10.1063/1.4824040&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/1/4/10.1063/1.4824040'
Top,Right1,Right2,Right3,