Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. O. Khaselev and J. Turner, Science 280, 425 (1998).
2. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, Int. J. Hydrogen Energy 27, 991 (2002).
3. K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe, and H. Sugihara, J. Phys. Chem. B 110, 11352 (2006).
4. A. Kudo, K. Omori, and H. Kato, J. Am. Chem. Soc. 121, 11459 (1999).
5. S. Tokunaga, H. Kato, and A. Kudo, Chem. Mater. 13, 4624 (2001).
6. M. W. Stoltzfus, P. M. Woodward, R. Seshadri, J.-H. Klepeis, and B. Bursten, Inorg. Chem. 46, 3839 (2007).
7. H. M. Zhang, J. B. Liu, H. Wang, W. X. Zhang, and H. Yan, J. Nanopart. Res. 10, 767 (2008).
8. H. Luo, A. Mueller, T. McCleskey, A. Burrell, E. Bauer, and Q. Jia, J. Phys. Chem. C 112, 6099 (2008).
9. A. Walsh, Y. Yan, M. N. Huda, M. M. Al-Jassim, and S.-H. Wei, Chem. Mater. 21, 547 (2009).
10. D. J. Payne, M. D. M. Robinson, R. G. Egdell, A. Walsh, J. McNulty, K. E. Smith, and L. F. J. Piper, Appl. Phys. Lett. 98, 212110 (2011).
11. Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu, and G. Xiao, Appl. Catal., B 104, 30 (2011).
12. W. J. Jo, J.-W. Jang, K.-J. Kong, H. J. Kang, J. Y. Kim, H. Jun, K. P. S. Parmar, and J. S. Lee, Angew. Chem., Int. Ed. 51, 3147 (2012).
13. J. A. Seabold and K.-S. Choi, J. Am. Chem. Soc. 134, 2186 (2012).
14. J. D. Bierlein and A. W. Sleight, Solid State Commun. 16, 69 (1975).
15. M. Zhou, S. Zhang, Y. Sun, C. Wu, M. Wang, and Y. Xie, Chem. Asian J. 5, 2515 (2010).
16. M. Zhou, J. Bao, W. Bi, Y. Zeng, R. Zhu, M. Tao, and Y. Xie, ChemSusChem 5, 1420 (2012).
17. Q. Jia, K. Iwashina, and A. Kudo, Proc. Natl. Acad. Sci. U.S.A. 109, 11564 (2012).
18. A. W. Sleight, H. Y. Chen, A. Ferretti, and D. E. Cox, Mater. Res. Bull. 14, 1571 (1979).
19. Z. Zhao, Z. Li, and Z. Zou, Phys. Chem. Chem. Phys. 13, 4746 (2011).
20. S. Migita, Y. Kasai, H. Ota, and S. Sakai, Appl. Phys. Lett. 71, 3712 (1997).
21. C. D. Theis, J. Yeh, D. G. Schlom, M. E. Hawley, G. W. Brown, J. C. Jiang, and X. Q. Pan, Appl. Phys. Lett. 72, 2817 (1998).
22. J. F. Ihlefeld, A. Kumar, V. Gopalan, D. G. Schlom, Y. B. Chen, X. Q. Pan, T. Heeg, J. Schubert, X. Ke, P. Schiffer, J. Orenstein, L. W. Martin, Y. H. Chu, and R. Ramesh, Appl. Phys. Lett. 91, 071922 (2007).
23.See supplementary material at for depictions of the crystal structure of the film and substrate, air SEM analysis from which fractional coverage was estimated, and x-ray spectroscopy results confirming bonding states of film atoms. [Supplementary Material]
24.Calculated by interpolation (assuming Vegard's law) from the cubic lattice constants of YSZ with 9 and 10 mol% Y2O3 reported by M. Yashima, S. Sasaki, M. Kakihana, Y. Yamaguchi, H. Arashi, and M. Yoshimura, Acta Crystallogr., Sect. B 50, 663 (1994).
25.Calculated by interpolating the thermal expansion data for YSZ reported by J. W. Adams, H. H. Nakamura, R. P. Ingel, and R. W. Rice, J. Am. Ceram. Soc. 68, C228 (1985).
26. R. L. Frost, D. A. Henry, M. L. Weier, and W. Martens, J. Raman Spectrosc. 37, 722732 (2006).
27. M. Gotic, S. Music, M. Ivanda, M. Soufek, and S. Popovic, J. Mol. Struct. 744–747, 535 (2005).
28. J. Cai, C. Raptis, Y. S. Raptis, and E. Anastassakis, Phys. Rev. B 51, 201 (1995).
29. J. Lee, P. I. Rovira, I. An, and R. W. Collins, Rev. Sci. Instrum. 69, 1800 (1998).
30. B. Johs, J. A. Woollam, C. M. Herzinger, J. Hilfiker, R. Synowicki, and C. L. Bungay, in Critical Reviews of Optical Science and Technology, Optical Metrology, edited by G. A. Al-Jumaily (SPIE Publishing, Bellingham, WA, 1999), Vol. CR72, pp. 2958.
31. Y. Cong, I. An, K. Vedam, and R. W. Collins, Appl. Opt. 30, 2692 (1991).
32. H. Fujiwara, J. Koh, P. I. Rovira, and R. W. Collins, Phys. Rev. B 61, 10832 (2000).
33. R. W. Collins and A. S. Ferlauto, in Handbook of Ellipsometry, edited by H. G. Tompkins and E. A. Irene (William Andrew, Norwich, NY, 2005), pp. 125129.
34. D. E. Aspnes, in Handbook on Semiconductors, edited by M. Balkanski (North Holland, Amsterdam NL, 1980), Vol. 2, pp. 125127.
35. J. I. Pankov, Optical Processes in Semiconductors (Dover, New York, 1975), p. 37.
36.L. F. Kourkoutis, Y. Hotta, T. Susaki, H. Y. Hwang, and D. A. Muller, Phys. Rev. Lett. 97, 256803 (2006).

Data & Media loading...


Article metrics loading...



Single-phase epitaxial films of the monoclinic polymorph of BiVO were synthesized by reactive molecular-beam epitaxy under adsorption-controlled conditions. The BiVO films were grown on (001) yttria-stabilized cubic zirconia (YSZ) substrates. Four-circle x-ray diffraction, scanning transmission electron microscopy (STEM), and Raman spectroscopy confirm the epitaxial growth of monoclinic BiVO with an atomically abrupt interface and orientation relationship (001) ∥ (001) with [100] ∥ [100]. Spectroscopic ellipsometry, STEM electron energy loss spectroscopy (STEM-EELS), and x-ray absorption spectroscopy indicate that the films have a direct band gap of 2.5 ± 0.1 eV.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd