Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, Phys. Rev. B 83, 064101 (2011).
2. S. J. May, J.-W. Kim, J. M. Rondinelli, E. Karapetrova, N. A. Spaldin, A. Bhattacharya, and P. J. Ryan, Phys. Rev. B 82, 014110 (2010).
3. A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
4. M. Takano, Y. Takeda, H. Okada, M. Miyamoto, and T. Kusaka, Physica C 159, 375 (1989).
5. G. Er, S. Kikkawa, Y. Miyamoto, S. Tanaka, M. Sera, M. Sato, Z. Hiroi, M. Takano, and Y. Bando, Physica C 196, 271 (1992).
6. M. Azuma, Z. Hiroi, M. Takano, Y. Bando, and Y. Takeda, Nature (London) 356, 775 (1992).
7. M. G. Smith, A. Manthiram, J. Zhou, J. B. Goodenough, and J. T. Markert, Nature (London) 351, 549 (1991).
8. G. Koster, A. Brinkman, H. Hilgenkamp, A. J. H. M. Rijnders, and D. H. A. Blank, J. Phys.: Condens. Matter 20, 264007 (2008).
9. Z. Zhong, G. Koster, and P. J. Kelly, Phys. Rev. B 85, 121411R (2012).
10. D. Samal, T. Haiyan, H. Molegraaf, B. Kuiper, W. Siemons, S. Bals, J. Verbeeck, G. Van Tendeloo, Y. Takamura, E. Arenholz, C. A. Jenkins, G. Rijnders, and G. Koster, Phys. Rev. Lett. 111, 096102 (2013).
11. C. Aruta, C. Schlueter, T.-L. Lee, D. Di Castro, D. Innocenti, A. Tebano, J. Zegenhagen, and G. Balestrino, Phys. Rev. B 87, 155145 (2013).
12. M. Huijben, G. Koster, M. K. Kruize, S. Wenderich, J. Verbeeck, S. Bals, E. Slooten, B. Shi, H. J. A. Molegraaf, J. E. Kleibeuker, S. van Aert, J. B. Goedkoop, A. Brinkman, D. H. A. Blank, M. S. Golden, G. van Tendeloo, H. Hilgenkamp, and G. Rijnders, “Defect engineering in oxide heterostructures by enhanced oxygen surface exchange.” Adv. Funct. Mater. (published online).
13. C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert, and K. Urban, Phys. Rev. B 79, 081405 (2009).
14. D. I. Woodward and I. M. Reaney, Acta. Crystallogr. 61, 387 (2005).
15. A. Pancotti, N. Barrett, L. F. Zagonel, and G. M. Vanacore, J. Appl. Phys. 106, 034104 (2009).
16. L. Despont, C. Koitzsch, F. Clerc, M. G. Garnier, P. Aebi, C. Lichtensteiger, J.-M. Triscone, F. J. Garcia de Abajo, E. Bousquet, and P. Ghosez, Phys. Rev. B 73, 094110 (2006).
17. D. P. Woodruff, J. Electron Spectrosc. 178–179, 186 (2010).
18. J. Kawai, K. Tamura, M. Owari, and Y. Nihei, J. Electron. Spectrosc. 61, 103 (1992).
19. F. J. García de Abajo, M. A. Van Hove, and C. S. Fadley, Phys. Rev. B 63, 075404 (2001).
20. W. Siemons, G. Koster, D. H. A. Blank, R. H. Hammond, T. H. Geballe, and M. R. Beasley, Phys. Rev. B 79, 195122 (2009).
21. G. Koster, B. L. Kropman, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, Appl. Phys. Lett. 73, 2920 (1998).
22. F. Parmigiani, L. E. Depero, T. Minerva, and J. B. Torrance, J. Electron Spectrosc. 58, 315 (1992).
23. M. A. van Veenendaal and G. A. Sawatzky, Phys. Rev. Lett. 70, 2459 (1993).
24.Quantitative XPS analysis was done using theoretical cross-sections, without taking into account the energy dependent inelastic losses and assuming a homogeneous film. This method allows us to compare the changes in the stoichiometry of SrCuO2 films with respect to each other. However, a more accurate estimation requires the consideration of inelastic losses.
25. J. H. Scofield, J. Electron Spectrosc. 8, 129 (1976).

Data & Media loading...


Article metrics loading...



Epitaxial and atomically smooth ultra-thin SrCuO films are grown on SrTiO substrates using pulsed laser deposition. The structural and chemical aspects of these single-layer films of various thickness are characterized using X-ray photoelectron diffraction (XPD) and photoelectron spectroscopy. By comparing XPD scans to multiple-scattering electron diffraction simulations, we demonstrate a structural transformation from bulk-planar to chain-type SrCuO as the film thickness is reduced from 9 to 3 unit-cells. This observation is in agreement with the recent theoretical prediction [Z. Zhong, G. Koster, and P. J. Kelly, Phys. Rev. B , 121411(R) (2012)] and opens new pathways for structural tuning in ultra-thin films of polar cuprates.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd