Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/1/4/10.1063/1.4824779
1.
1. A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, Phys. Rev. B 83, 064101 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.064101
2.
2. S. J. May, J.-W. Kim, J. M. Rondinelli, E. Karapetrova, N. A. Spaldin, A. Bhattacharya, and P. J. Ryan, Phys. Rev. B 82, 014110 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.014110
3.
3. A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
4.
4. M. Takano, Y. Takeda, H. Okada, M. Miyamoto, and T. Kusaka, Physica C 159, 375 (1989).
http://dx.doi.org/10.1016/S0921-4534(89)80007-3
5.
5. G. Er, S. Kikkawa, Y. Miyamoto, S. Tanaka, M. Sera, M. Sato, Z. Hiroi, M. Takano, and Y. Bando, Physica C 196, 271 (1992).
http://dx.doi.org/10.1016/0921-4534(92)90446-J
6.
6. M. Azuma, Z. Hiroi, M. Takano, Y. Bando, and Y. Takeda, Nature (London) 356, 775 (1992).
http://dx.doi.org/10.1038/356775a0
7.
7. M. G. Smith, A. Manthiram, J. Zhou, J. B. Goodenough, and J. T. Markert, Nature (London) 351, 549 (1991).
http://dx.doi.org/10.1038/351549a0
8.
8. G. Koster, A. Brinkman, H. Hilgenkamp, A. J. H. M. Rijnders, and D. H. A. Blank, J. Phys.: Condens. Matter 20, 264007 (2008).
http://dx.doi.org/10.1088/0953-8984/20/26/264007
9.
9. Z. Zhong, G. Koster, and P. J. Kelly, Phys. Rev. B 85, 121411R (2012).
http://dx.doi.org/10.1103/PhysRevB.85.121411
10.
10. D. Samal, T. Haiyan, H. Molegraaf, B. Kuiper, W. Siemons, S. Bals, J. Verbeeck, G. Van Tendeloo, Y. Takamura, E. Arenholz, C. A. Jenkins, G. Rijnders, and G. Koster, Phys. Rev. Lett. 111, 096102 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.096102
11.
11. C. Aruta, C. Schlueter, T.-L. Lee, D. Di Castro, D. Innocenti, A. Tebano, J. Zegenhagen, and G. Balestrino, Phys. Rev. B 87, 155145 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.155145
12.
12. M. Huijben, G. Koster, M. K. Kruize, S. Wenderich, J. Verbeeck, S. Bals, E. Slooten, B. Shi, H. J. A. Molegraaf, J. E. Kleibeuker, S. van Aert, J. B. Goedkoop, A. Brinkman, D. H. A. Blank, M. S. Golden, G. van Tendeloo, H. Hilgenkamp, and G. Rijnders, “Defect engineering in oxide heterostructures by enhanced oxygen surface exchange.” Adv. Funct. Mater. (published online).
http://dx.doi.org/10.1002/adfm.201203355
13.
13. C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert, and K. Urban, Phys. Rev. B 79, 081405 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.081405
14.
14. D. I. Woodward and I. M. Reaney, Acta. Crystallogr. 61, 387 (2005).
http://dx.doi.org/10.1107/S0108768105015521
15.
15. A. Pancotti, N. Barrett, L. F. Zagonel, and G. M. Vanacore, J. Appl. Phys. 106, 034104 (2009).
http://dx.doi.org/10.1063/1.3183938
16.
16. L. Despont, C. Koitzsch, F. Clerc, M. G. Garnier, P. Aebi, C. Lichtensteiger, J.-M. Triscone, F. J. Garcia de Abajo, E. Bousquet, and P. Ghosez, Phys. Rev. B 73, 094110 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.094110
17.
17. D. P. Woodruff, J. Electron Spectrosc. 178–179, 186 (2010).
http://dx.doi.org/10.1016/j.elspec.2009.06.008
18.
18. J. Kawai, K. Tamura, M. Owari, and Y. Nihei, J. Electron. Spectrosc. 61, 103 (1992).
http://dx.doi.org/10.1016/0368-2048(92)80054-C
19.
19. F. J. García de Abajo, M. A. Van Hove, and C. S. Fadley, Phys. Rev. B 63, 075404 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.075404
20.
20. W. Siemons, G. Koster, D. H. A. Blank, R. H. Hammond, T. H. Geballe, and M. R. Beasley, Phys. Rev. B 79, 195122 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195122
21.
21. G. Koster, B. L. Kropman, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, Appl. Phys. Lett. 73, 2920 (1998).
http://dx.doi.org/10.1063/1.122630
22.
22. F. Parmigiani, L. E. Depero, T. Minerva, and J. B. Torrance, J. Electron Spectrosc. 58, 315 (1992).
http://dx.doi.org/10.1016/0368-2048(92)85017-2
23.
23. M. A. van Veenendaal and G. A. Sawatzky, Phys. Rev. Lett. 70, 2459 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.2459
24.
24.Quantitative XPS analysis was done using theoretical cross-sections, without taking into account the energy dependent inelastic losses and assuming a homogeneous film. This method allows us to compare the changes in the stoichiometry of SrCuO2 films with respect to each other. However, a more accurate estimation requires the consideration of inelastic losses.
25.
25. J. H. Scofield, J. Electron Spectrosc. 8, 129 (1976).
http://dx.doi.org/10.1016/0368-2048(76)80015-1
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4824779
Loading
/content/aip/journal/aplmater/1/4/10.1063/1.4824779
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/4/10.1063/1.4824779
2013-10-11
2016-12-11

Abstract

Epitaxial and atomically smooth ultra-thin SrCuO films are grown on SrTiO substrates using pulsed laser deposition. The structural and chemical aspects of these single-layer films of various thickness are characterized using X-ray photoelectron diffraction (XPD) and photoelectron spectroscopy. By comparing XPD scans to multiple-scattering electron diffraction simulations, we demonstrate a structural transformation from bulk-planar to chain-type SrCuO as the film thickness is reduced from 9 to 3 unit-cells. This observation is in agreement with the recent theoretical prediction [Z. Zhong, G. Koster, and P. J. Kelly, Phys. Rev. B , 121411(R) (2012)] and opens new pathways for structural tuning in ultra-thin films of polar cuprates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/4/1.4824779.html;jsessionid=ZTeA5WAAvvp4Qi3U32TA7ym4.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/4/10.1063/1.4824779&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/1/4/10.1063/1.4824779&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/1/4/10.1063/1.4824779'
Top,Right1,Right2,Right3,