Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Fujishima and K. Honda, Nature (London) 238, 37 (1972).
2. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).
3. T. Faunce, S. Styring, M. R. Wasielewski, G. W. Brudvig, A. W. Rutherford, J. Messinger, A. F. Lee, C. L. Hill, H. deGroot, M. Fontecave, D. R. MacFarlane, B. Hankamer, D. G. Nocera, D. M. Tiede, H. Dau, W. Hillier, L. Z. Wang, and R. Amal, Energy Environ. Sci. 6, 1074 (2013).
4. K. Maeda, M. Higashi, D. Lu, R. Abe, and K. Domen, J. Am. Chem. Soc. 132, 5858 (2010).
5. K. Maeda and K. Domen, J. Phys. Chem. Lett. 1, 2655 (2010).
6. J. Barber, Chem. Soc. Rev. 38, 185 (2009).
7. Y. Tachibana, L. Vayssieres, and J. R. Durrant, Nat. Photonics 6, 511 (2012).
8. A. Magnuson and S. Styring, Aust. J. Chem. 65, 564 (2012).
9. A. Facchetti, Mater. Today 16, 123 (2013).
10. A. Facchetti, Nat. Mater. 12, 598 (2013).
11. P. K. Dutta and M. Severance, J. Phys. Chem. Lett. 2, 467 (2011).
12. Q. J. Xiang and J. G. Yu, J. Phys. Chem. Lett. 4, 753 (2013).
13. N. Zhang, S. Q. Liu, and Y. J. Xu, Nanoscale 4, 2227 (2012).
14. X. B. Li, X. Liu, Y. Ma, M. R. Li, J. Zhao, H. C. Xin, L. Zhang, Y. Yang, C. Li, and Q. H. Yang, Adv. Mater. 24, 1424 (2012).
15. D. Wendell, J. Todd, and C. Montemagno, Nano Lett. 10, 3231 (2010).
16. T. Shichi and K. Takagi, J. Photochem. Photobiol. C 1, 113 (2000).
17. X. N. Wu, W. W. Weare, and H. Frei, Dalton Trans. 2009(45), 10114.
18. H. X. Han and H. Frei, J. Phys. Chem. C. 112, 16156 (2008).
19. B. Li, F. Li, S. Y. Bai, Z. J. Wang, L. C. Sun, Q. H. Yang, and C. Li, Energy Environ. Sci. 5, 8229 (2012).
20. J. Liu, S. Z. Qiao, J. S. Chen, X. W. Lou, X. R. Xing, and G. Q. Lu, Chem. Commun. 47, 12578 (2011).
21. Y. Zhao and L. Jiang, Adv. Mater. 21, 3621 (2009).
22. X. W. Lou, L. A. Archer, and Z. C. Yang, Adv. Mater. 20, 3987 (2008).
23. J. H. Sun, J. S. Zhang, M. W. Zhang, M. Antonietti, X. Z. Fu, and X. C. Wang, Nat. Commun. 3, 1139 (2012).
24. Z. F. Bian, J. Zhu, F. L. Cao, Y. F. Lu, and H. X. Li, Chem. Commun. 2009(25), 3789.
25. N. Zhang, X. Z. Fu, and Y. J. Xu, J. Mater. Chem. 21, 8152 (2011).
26. H. X. Li, Z. F. Bian, J. Zhu, D. Q. Zhang, G. S. Li, Y. N. Huo, H. Li, and Y. F. Lu, J. Am. Chem. Soc. 129, 8406 (2007).
27. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin, and M. Gratzel, Thin Solid Films 516, 4613 (2008).
28. Z. H. Dong, X. Y. Lai, J. E. Halpert, N. L. Yang, L. X. Yi, J. Zhai, D. Wang, Z. Y. Tang, and L. Jiang, Adv. Mater. 24, 1046 (2012).
29. Y. Zeng, X. Wang, H. Wang, Y. Dong, Y. Ma, and J. N. Yao, Chem. Commun. 46, 4312 (2010).
30. X. Xu, X. Fang, T. Zhai, H. Zeng, B. Liu, X. Hu, Y. Bando, and D. Golberg, Small 7, 445 (2011).
31. W. Q. Fang, X. H. Yang, H. J. Zhu, Z. Li, H. J. Zhao, X. D. Yao, and H. G. Yang, J. Mater. Chem. 22, 22082 (2012).
32. J. Zhao, P. P. Su, Y. P. Zhao, M. R. Li, Y. Yang, Q. H. Yang, and C. Li, J. Mater. Chem. 22, 8470 (2012).
33. X. Xu, R. Cao, S. Jeong, and J. Cho, Nano Lett. 12, 4988 (2012).
34. J. Zhao, M. R. Li, J. L. Sun, L. F. Liu, P. P. Su, Q. H. Yang, and C. Li, Chem. Eur. J. 18, 3163 (2012).
35. L. Zhang, H. B. Wu, and X. W. Lou, J. Am. Chem. Soc. 135, 10664 (2013).
36. Z. Jiang, H. Y. Sun, Z. H. Qin, X. L. Jiao, and D. R. Chen, Chem. Commun. 48, 3620 (2012).
37. L. Zhang, H. B. Wu, S. Madhavi, H. H. Hng, and X. W. Lou, J. Am. Chem. Soc. 134, 17388 (2012).
38. M. Hu, A. A. Belik, M. Imura, K. Mibu, Y. Tsujimoto, and Y. Yamauchi, Chem. Mater. 24, 2698 (2012).
39. J. Yang, D. Wang, H. Han, and C. Li, Acc. Chem. Res. 46, 1900 (2013).
40. W. Cho, Y. H. Lee, H. J. Lee, and M. Oh, Chem. Commun. 2009(31), 4756.
41. W. Cho, Y. H. Lee, H. J. Lee, and M. Oh, Adv. Mater. 23, 1720 (2011).
42. J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, Angew. Chem. Int. Ed. 47, 1766 (2008).
43. J. S. Jang, H. G. Kim, and J. S. Lee, Catal. Today 185, 270 (2012).
44. X. Wang, Q. Xu, M. R. Li, S. Shen, X. L. Wang, Y. C. Wang, Z. C. Feng, J. Y. Shi, H. X. Han, and C. Li, Angew. Chem. Int. Ed. 51, 13089 (2012).
45. W. J. Youngblood, S. H. A. Lee, K. Maeda, and T. E. Mallouk, Acc. Chem. Res. 42, 1966 (2009).
46. H. Hagiwara, N. Ono, T. Inoue, H. Matsumoto, and T. Ishihara, Angew. Chem. Int. Ed. 45, 1420 (2006).
47. R. S. Khnayzer, J. Blumhoff, J. A. Harrington, A. Haefele, F. Deng, and F. N. Castellano, Chem. Commun. 48, 209 (2012).
48. Z. Q. Li, C. L. Li, Y. Y. Mei, L. M. Wang, G. H. Du, and Y. J. Xiong, Nanoscale 5, 3030 (2013).
49. W. B. Hou and S. B. Cronin, Adv. Funct. Mater. 23, 1612 (2013).
50. S. Linic, P. Christopher, and D. B. Ingram, Nat. Mater. 10, 911 (2011).
51. H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. G. Park, Adv. Mater. 20, 195 (2008).
52. J. H. Kim and J. H. Kim, J. Am. Chem. Soc. 134, 17478 (2012).
53. K. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto, T. Hisatomi, M. Takashima, D. Lu, M. Kanehara, T. Setoyama, T. Teranishi, and K. Domen, Angew. Chem. Int. Ed. 49, 4096 (2010).
54. Y. Miseki, H. Kato, and A. Kudo, Energy Environ. Sci. 2, 306 (2009).
55. D. Wang, T. Hisatomi, T. Takata, C. Pan, M. Katayama, J. Kubota, and K. Domen, “Core/Shell Photocatalyst with Spatially Separated Cocatalysts for Efficient Reduction and Oxidation of Water,” Angew. Chem. Int. Ed. (published online).

Data & Media loading...


Article metrics loading...



Learning from nature, one of the most prominent goals of photocatalysis is to assemble multifunctional photocatalytic units in an integrated, high performance device that is capable of using solar energy to produce “solar hydrogen” from aqueous media. By analogy with natural systems it is clear that scaffolds with multi-scale structural architectures are necessary. In this perspective, recent progress related to the use of hollow micro/nanomaterials as nanoreactors for photocatalysis is discussed. Organised, multi-scale assemblies of photocatalytic units on hollow scaffolds is an emerging area that shows much promise for the synthesis of high performance photocatalysts. Not only do improved transport and diffusion characteristics play an import role, but increased electron/hole separation lifetimes as well as improved light harvesting characteristics by the hollow structures also do so and are touched upon in this short perspective.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd