Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/1/4/10.1063/1.4826155
1.
1. A. Fujishima and K. Honda, Nature (London) 238, 37 (1972).
http://dx.doi.org/10.1038/238037a0
2.
2. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).
http://dx.doi.org/10.1039/b800489g
3.
3. T. Faunce, S. Styring, M. R. Wasielewski, G. W. Brudvig, A. W. Rutherford, J. Messinger, A. F. Lee, C. L. Hill, H. deGroot, M. Fontecave, D. R. MacFarlane, B. Hankamer, D. G. Nocera, D. M. Tiede, H. Dau, W. Hillier, L. Z. Wang, and R. Amal, Energy Environ. Sci. 6, 1074 (2013).
http://dx.doi.org/10.1039/c3ee40534f
4.
4. K. Maeda, M. Higashi, D. Lu, R. Abe, and K. Domen, J. Am. Chem. Soc. 132, 5858 (2010).
http://dx.doi.org/10.1021/ja1009025
5.
5. K. Maeda and K. Domen, J. Phys. Chem. Lett. 1, 2655 (2010).
http://dx.doi.org/10.1021/jz1007966
6.
6. J. Barber, Chem. Soc. Rev. 38, 185 (2009).
http://dx.doi.org/10.1039/b802262n
7.
7. Y. Tachibana, L. Vayssieres, and J. R. Durrant, Nat. Photonics 6, 511 (2012).
http://dx.doi.org/10.1038/nphoton.2012.175
8.
8. A. Magnuson and S. Styring, Aust. J. Chem. 65, 564 (2012).
http://dx.doi.org/10.1071/CH12114
9.
9. A. Facchetti, Mater. Today 16, 123 (2013).
http://dx.doi.org/10.1016/j.mattod.2013.04.005
10.
10. A. Facchetti, Nat. Mater. 12, 598 (2013).
http://dx.doi.org/10.1038/nmat3686
11.
11. P. K. Dutta and M. Severance, J. Phys. Chem. Lett. 2, 467 (2011).
http://dx.doi.org/10.1021/jz101500z
12.
12. Q. J. Xiang and J. G. Yu, J. Phys. Chem. Lett. 4, 753 (2013).
http://dx.doi.org/10.1021/jz302048d
13.
13. N. Zhang, S. Q. Liu, and Y. J. Xu, Nanoscale 4, 2227 (2012).
http://dx.doi.org/10.1039/c2nr00009a
14.
14. X. B. Li, X. Liu, Y. Ma, M. R. Li, J. Zhao, H. C. Xin, L. Zhang, Y. Yang, C. Li, and Q. H. Yang, Adv. Mater. 24, 1424 (2012).
http://dx.doi.org/10.1002/adma.201104167
15.
15. D. Wendell, J. Todd, and C. Montemagno, Nano Lett. 10, 3231 (2010).
http://dx.doi.org/10.1021/nl100550k
16.
16. T. Shichi and K. Takagi, J. Photochem. Photobiol. C 1, 113 (2000).
http://dx.doi.org/10.1016/S1389-5567(00)00008-3
17.
17. X. N. Wu, W. W. Weare, and H. Frei, Dalton Trans. 2009(45), 10114.
http://dx.doi.org/10.1039/B915946K
18.
18. H. X. Han and H. Frei, J. Phys. Chem. C. 112, 16156 (2008).
http://dx.doi.org/10.1021/jp803994d
19.
19. B. Li, F. Li, S. Y. Bai, Z. J. Wang, L. C. Sun, Q. H. Yang, and C. Li, Energy Environ. Sci. 5, 8229 (2012).
http://dx.doi.org/10.1039/c2ee22059h
20.
20. J. Liu, S. Z. Qiao, J. S. Chen, X. W. Lou, X. R. Xing, and G. Q. Lu, Chem. Commun. 47, 12578 (2011).
http://dx.doi.org/10.1039/c1cc13658e
21.
21. Y. Zhao and L. Jiang, Adv. Mater. 21, 3621 (2009).
http://dx.doi.org/10.1002/adma.200803645
22.
22. X. W. Lou, L. A. Archer, and Z. C. Yang, Adv. Mater. 20, 3987 (2008).
http://dx.doi.org/10.1002/adma.200800854
23.
23. J. H. Sun, J. S. Zhang, M. W. Zhang, M. Antonietti, X. Z. Fu, and X. C. Wang, Nat. Commun. 3, 1139 (2012).
http://dx.doi.org/10.1038/ncomms2152
24.
24. Z. F. Bian, J. Zhu, F. L. Cao, Y. F. Lu, and H. X. Li, Chem. Commun. 2009(25), 3789.
http://dx.doi.org/10.1039/B906421D
25.
25. N. Zhang, X. Z. Fu, and Y. J. Xu, J. Mater. Chem. 21, 8152 (2011).
http://dx.doi.org/10.1039/c1jm10100e
26.
26. H. X. Li, Z. F. Bian, J. Zhu, D. Q. Zhang, G. S. Li, Y. N. Huo, H. Li, and Y. F. Lu, J. Am. Chem. Soc. 129, 8406 (2007).
http://dx.doi.org/10.1021/ja072191c
27.
27. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin, and M. Gratzel, Thin Solid Films 516, 4613 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.05.090
28.
28. Z. H. Dong, X. Y. Lai, J. E. Halpert, N. L. Yang, L. X. Yi, J. Zhai, D. Wang, Z. Y. Tang, and L. Jiang, Adv. Mater. 24, 1046 (2012).
http://dx.doi.org/10.1002/adma.201104626
29.
29. Y. Zeng, X. Wang, H. Wang, Y. Dong, Y. Ma, and J. N. Yao, Chem. Commun. 46, 4312 (2010).
http://dx.doi.org/10.1039/c0cc00706d
30.
30. X. Xu, X. Fang, T. Zhai, H. Zeng, B. Liu, X. Hu, Y. Bando, and D. Golberg, Small 7, 445 (2011).
http://dx.doi.org/10.1002/smll.201001849
31.
31. W. Q. Fang, X. H. Yang, H. J. Zhu, Z. Li, H. J. Zhao, X. D. Yao, and H. G. Yang, J. Mater. Chem. 22, 22082 (2012).
http://dx.doi.org/10.1039/c2jm34787c
32.
32. J. Zhao, P. P. Su, Y. P. Zhao, M. R. Li, Y. Yang, Q. H. Yang, and C. Li, J. Mater. Chem. 22, 8470 (2012).
http://dx.doi.org/10.1039/c2jm30500c
33.
33. X. Xu, R. Cao, S. Jeong, and J. Cho, Nano Lett. 12, 4988 (2012).
http://dx.doi.org/10.1021/nl302618s
34.
34. J. Zhao, M. R. Li, J. L. Sun, L. F. Liu, P. P. Su, Q. H. Yang, and C. Li, Chem. Eur. J. 18, 3163 (2012).
http://dx.doi.org/10.1002/chem.201103415
35.
35. L. Zhang, H. B. Wu, and X. W. Lou, J. Am. Chem. Soc. 135, 10664 (2013).
http://dx.doi.org/10.1021/ja401727n
36.
36. Z. Jiang, H. Y. Sun, Z. H. Qin, X. L. Jiao, and D. R. Chen, Chem. Commun. 48, 3620 (2012).
http://dx.doi.org/10.1039/c2cc00004k
37.
37. L. Zhang, H. B. Wu, S. Madhavi, H. H. Hng, and X. W. Lou, J. Am. Chem. Soc. 134, 17388 (2012).
http://dx.doi.org/10.1021/ja307475c
38.
38. M. Hu, A. A. Belik, M. Imura, K. Mibu, Y. Tsujimoto, and Y. Yamauchi, Chem. Mater. 24, 2698 (2012).
http://dx.doi.org/10.1021/cm300615s
39.
39. J. Yang, D. Wang, H. Han, and C. Li, Acc. Chem. Res. 46, 1900 (2013).
http://dx.doi.org/10.1021/ar300227e
40.
40. W. Cho, Y. H. Lee, H. J. Lee, and M. Oh, Chem. Commun. 2009(31), 4756.
http://dx.doi.org/10.1039/B907281K
41.
41. W. Cho, Y. H. Lee, H. J. Lee, and M. Oh, Adv. Mater. 23, 1720 (2011).
http://dx.doi.org/10.1002/adma.201004493
42.
42. J. Zhang, Q. Xu, Z. Feng, M. Li, and C. Li, Angew. Chem. Int. Ed. 47, 1766 (2008).
http://dx.doi.org/10.1002/anie.200704788
43.
43. J. S. Jang, H. G. Kim, and J. S. Lee, Catal. Today 185, 270 (2012).
http://dx.doi.org/10.1016/j.cattod.2011.07.008
44.
44. X. Wang, Q. Xu, M. R. Li, S. Shen, X. L. Wang, Y. C. Wang, Z. C. Feng, J. Y. Shi, H. X. Han, and C. Li, Angew. Chem. Int. Ed. 51, 13089 (2012).
http://dx.doi.org/10.1002/anie.201207554
45.
45. W. J. Youngblood, S. H. A. Lee, K. Maeda, and T. E. Mallouk, Acc. Chem. Res. 42, 1966 (2009).
http://dx.doi.org/10.1021/ar9002398
46.
46. H. Hagiwara, N. Ono, T. Inoue, H. Matsumoto, and T. Ishihara, Angew. Chem. Int. Ed. 45, 1420 (2006).
http://dx.doi.org/10.1002/anie.200503316
47.
47. R. S. Khnayzer, J. Blumhoff, J. A. Harrington, A. Haefele, F. Deng, and F. N. Castellano, Chem. Commun. 48, 209 (2012).
http://dx.doi.org/10.1039/c1cc16015j
48.
48. Z. Q. Li, C. L. Li, Y. Y. Mei, L. M. Wang, G. H. Du, and Y. J. Xiong, Nanoscale 5, 3030 (2013).
http://dx.doi.org/10.1039/c3nr34018j
49.
49. W. B. Hou and S. B. Cronin, Adv. Funct. Mater. 23, 1612 (2013).
http://dx.doi.org/10.1002/adfm.201202148
50.
50. S. Linic, P. Christopher, and D. B. Ingram, Nat. Mater. 10, 911 (2011).
http://dx.doi.org/10.1038/nmat3151
51.
51. H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, and N. G. Park, Adv. Mater. 20, 195 (2008).
http://dx.doi.org/10.1002/adma.200700840
52.
52. J. H. Kim and J. H. Kim, J. Am. Chem. Soc. 134, 17478 (2012).
http://dx.doi.org/10.1021/ja308789u
53.
53. K. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto, T. Hisatomi, M. Takashima, D. Lu, M. Kanehara, T. Setoyama, T. Teranishi, and K. Domen, Angew. Chem. Int. Ed. 49, 4096 (2010).
http://dx.doi.org/10.1002/anie.201001259
54.
54. Y. Miseki, H. Kato, and A. Kudo, Energy Environ. Sci. 2, 306 (2009).
http://dx.doi.org/10.1039/b818922f
55.
55. D. Wang, T. Hisatomi, T. Takata, C. Pan, M. Katayama, J. Kubota, and K. Domen, “Core/Shell Photocatalyst with Spatially Separated Cocatalysts for Efficient Reduction and Oxidation of Water,” Angew. Chem. Int. Ed. (published online).
http://dx.doi.org/10.1002/anie.201303693
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4826155
Loading
/content/aip/journal/aplmater/1/4/10.1063/1.4826155
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/4/10.1063/1.4826155
2013-10-23
2016-12-09

Abstract

Learning from nature, one of the most prominent goals of photocatalysis is to assemble multifunctional photocatalytic units in an integrated, high performance device that is capable of using solar energy to produce “solar hydrogen” from aqueous media. By analogy with natural systems it is clear that scaffolds with multi-scale structural architectures are necessary. In this perspective, recent progress related to the use of hollow micro/nanomaterials as nanoreactors for photocatalysis is discussed. Organised, multi-scale assemblies of photocatalytic units on hollow scaffolds is an emerging area that shows much promise for the synthesis of high performance photocatalysts. Not only do improved transport and diffusion characteristics play an import role, but increased electron/hole separation lifetimes as well as improved light harvesting characteristics by the hollow structures also do so and are touched upon in this short perspective.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/4/1.4826155.html;jsessionid=FQUanPzoJCwm_ka6cchsdNlN.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/4/10.1063/1.4826155&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/1/4/10.1063/1.4826155&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/1/4/10.1063/1.4826155'
Top,Right1,Right2,Right3,