1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Fluorescent polystyrene photonic crystals self-assembled with water-soluble conjugated polyrotaxanes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/4/10.1063/1.4826544
1.
1. E. Yablonovitch, Phys. Rev. Lett. 58(20), 2059 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2059
2.
2. S. John, Phys. Rev. Lett. 58(23), 2486 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2486
3.
3. J. J. Wierer, A. David, and M. M. Megens, Nat. Photonics 3(3), 163 (2009).
http://dx.doi.org/10.1038/nphoton.2009.21
4.
4. S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, Nano Lett. 10(7), 2303 (2010).
http://dx.doi.org/10.1021/nl904017t
5.
5. D. H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, Nano Lett. 9(7), 2742 (2009).
http://dx.doi.org/10.1021/nl901232p
6.
6. F. Di Stasio, M. Cucini, L. Berti, D. Comoretto, A. Abbotto, L. Bellotto, N. Manfredi, and C. Marinzi, J. Eur. Opt. Soc. Rapid Publ. 4, 7 (2009).
http://dx.doi.org/10.2971/jeos.2009.09033
7.
7. F. Scotognella, D. P. Puzzo, A. Monguzzi, D. S. Wiersma, D. Maschke, R. Tubino, and G. A. Ozin, Small 5(18), 2048 (2009).
http://dx.doi.org/10.1002/smll.200900331
8.
8. C. Lopez, Adv. Mater. 15(20), 1679 (2003).
http://dx.doi.org/10.1002/adma.200300386
9.
9. M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, Phys. Rev. Lett. 103(2), 4 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.023901
10.
10. J. F. Galisteo-Lopez, M. Ibisate, R. Sapienza, L. S. Froufe-Perez, A. Blanco, and C. Lopez, Adv. Mater. 23, 30 (2011).
http://dx.doi.org/10.1002/adma.201000356
11.
11. Paul V. Braun, Stephanie A. Rinne, and Florencio García-Santamaría, Adv. Mater. 18, 26652678 (2006).
http://dx.doi.org/10.1002/adma.200600769
12.
12. A. Pasquazi, S. Stivala, G. Assanto, V. Amendola, M. Meneghetti, M. Cucini, and D. Comoretto, Appl. Phys. Lett. 93(9), 091111 (2008).
http://dx.doi.org/10.1063/1.2977998
13.
13. I. S. Nikolaev, P. Lodahl, and W. L. Vos, Phys. Rev. A 71(5), 10 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.053813
14.
14. M. Barth, A. Gruber, and F. Cichos, Phys. Rev. B 72(8), 10 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085129
15.
15. V. Morandi, F. Marabelli, V. Amendola, M. Meneghetti, and D. Comoretto, Adv. Funct. Mater. 17, 2779 (2007).
http://dx.doi.org/10.1002/adfm.200600764
16.
16. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature (London) 430(7000), 654 (2004).
http://dx.doi.org/10.1038/nature02772
17.
17. L. Berti, M. Cucini, F. Di Stasio, D. Comoretto, M. Galli, F. Marabelli, N. Manfredi, C. Marinzi, and A. Abbotto, J. Phys. Chem. C 114(6), 2403 (2010).
http://dx.doi.org/10.1021/jp906002q
18.
18. B. McCaughey, C. Costello, D. Wang, J. E. Hampsey, Z. Yang, C. Li, C. J. Brinker, and Y. Lu, Adv. Mater. 15(15), 1266 (2003).
http://dx.doi.org/10.1002/adma.200304931
19.
19. K. Kim, S. Webster, N. Levi, D. L. Carroll, M. R. Pinto, and K. S. Schanze, Langmuir 21(11), 5207 (2005).
http://dx.doi.org/10.1021/la046821p
20.
20. Q. L. Fang, J. L. Geng, B. H. Liu, D. M. Gao, F. Li, Z. Y. Wang, G. J. Guan, and Z. P. Zhang, Chem.-Eur. J. 15(43), 11507 (2009).
http://dx.doi.org/10.1002/chem.200901488
21.
21. T. L. Kelly, Y. Yamada, C. Schneider, K. Yano, and M. O. Wolf, Adv. Funct. Mater. 19(23), 3737 (2009).
http://dx.doi.org/10.1002/adfm.200901484
22.
22. R. C. Polson, A. Chipouline, and Z. V. Vardeny, Adv. Mater. 13(10), 760 (2001).
http://dx.doi.org/10.1002/1521-4095(200105)13:10<760::AID-ADMA760>3.0.CO;2-Z
23.
23. F. Cacialli, J. S. Wilson, J. J. Michels, C. Daniel, C. Silva, R. H. Friend, N. Severin, P. Samori, J. P. Rabe, M. J. O’Connell, P. N. Taylor, and H. L. Anderson, Nature Mater. 1(3), 160 (2002).
http://dx.doi.org/10.1038/nmat750
24.
24. S. Brovelli, G. Latini, M. J. Frampton, S. O. McDonnell, F. E. Oddy, O. Fenwick, H. L. Anderson, and F. Cacialli, Nano Lett. 8(12), 4546 (2008).
http://dx.doi.org/10.1021/nl802775a
25.
25. M. M. Mroz, S. Perissinotto, T. Virgili, G. Gigli, M. Salerno, M. J. Frampton, G. Sforazzini, H. L. Anderson, and G. Lanzani, Appl. Phys. Lett. 95(3), 031108 (2009).
http://dx.doi.org/10.1063/1.3179689
26.
26. S. Brovelli, T. Virgili, M. M. Mroz, G. Sforazzini, A. Paleari, H. L. Anderson, G. Lanzani, and F. Cacialli, Adv. Mater. 22(33), 3690, (2010).
http://dx.doi.org/10.1002/adma.201000895
27.
27. S. Brovelli, F. Meinardi, G. Winroth, O. Fenwick, G. Sforazzini, M. J. Frampton, L. Zalewski, J. A. Levitt, F. Marinello, P. Schiavuta, K. Suhling, H. L. Anderson, and F. Cacialli, Adv. Funct. Mater. 20(2), 272 (2010).
http://dx.doi.org/10.1002/adfm.200901764
28.
28. S. Brovelli and F. Cacialli, Small 6(24), 2796 (2010).
http://dx.doi.org/10.1002/smll.201001881
29.
29. F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, Adv. Mater. 23(16), 1855 (2011).
http://dx.doi.org/10.1002/adma.201004356
30.
30. A. S. Dimitrov and K. Nagayama, Langmuir 12, 1303 (1996).
http://dx.doi.org/10.1021/la9502251
31.
31. F. Di Stasio, L. Berti, M. Burger, F. Marabelli, S. Gardin, T. Dainese, R. Signorini, R. Bozio, and D. Comoretto, Phys. Chem. Chem. Phys. 11(48), 11515 (2009).
http://dx.doi.org/10.1039/b910734g
32.
32.See supplementary material at http://dx.doi.org/10.1063/1.4826544 for reflectance spectra collected on different areas of opal films incorporating polyrotaxanes and for the reflectance and transmittance spectra at wavelengths below 400 nm showing the van Hove like structures of the opal film incorporating polyrotaxanes. [Supplementary Material]
33.
33. E. Pavarini, L. C. Andreani, C. Soci, M. Galli, and F. Marabelli, Phys. Rev. B 72, 045102 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.045102
34.
34. D. Comoretto, V. Robbiano, G. Canazza, L. Boarino, G. Panzarasa, M. Laus, and K. Sparnacci, Polym. Compos. 34(9), 1443 (2013).
http://dx.doi.org/10.1002/pc.22468
35.
35. V. Morandi, F. Marabelli, V. Amendola, M. Meneghetti, and D. Comoretto, J. Phys. Chem. C 112, 6293 (2008).
http://dx.doi.org/10.1021/jp711040r
36.
36. W. L. Vos, R. Sprik, A. v. Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, Phys. Rev. B 53(24), 16231 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.16231
37.
37. M. Cucini, M. Alloisio, A. Demartini, and D. Comoretto, in Biomimetic and Supramolecular System Research, edited by A. H. Lima (Nova Science, New York, 2008), p. 91.
38.
38. S. Kasiouli, F. Di Stasio, S. O. McDonnell, C. P. Constantinides, H. L. Anderson, F. Cacialli, and S. C. Hayes, J. Phys. Chem. B 117(18), 5737 (2013).
http://dx.doi.org/10.1021/jp400732h
39.
39. G. Latini, L. J. Parrott, S. Brovelli, M. J. Frampton, H. L. Anderson, and F. Cacialli, Adv. Funct. Mater. 19(23), 3679 (2009).
http://dx.doi.org/10.1002/adfm.200990107
40.
40. L. Bechger, P. Lodahl, and W. L. Vos, J. Phys. Chem. B 109(20), 9980 (2005).
http://dx.doi.org/10.1021/jp047489t
41.
41. E. M. Purcell, Phys. Rev. 69(11-1), 681 (1946).
42.
42. A. Petrozza, S. Brovelli, J. J. Michels, H. L. Anderson, R. H. Friend, C. Silva, and F. Cacialli, Adv. Mater. 20(17), 3218 (2008).
http://dx.doi.org/10.1002/adma.200800007
43.
43. S. Kubo, A. Fujishima, O. Sato, and H. Segawa, J. Phys. Chem. C 113(27), 11704 (2009).
http://dx.doi.org/10.1021/jp901743r
44.
44. M. Cucini, R. Narizzano, D. Comoretto, V. Morandi, and F. Marabelli, paper presented at the International Conference on Optical Probes of p-Conjugated Polymers and Functional Self-assemblies, Turku, Finland, 2007.
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4826544
Loading
/content/aip/journal/aplmater/1/4/10.1063/1.4826544
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/4/10.1063/1.4826544
2013-10-24
2014-09-20

Abstract

We demonstrate control of the photoluminescence spectra and decay rates of water-soluble green-emitting conjugated polyrotaxanes by incorporating them in polystyrene opals with a stop-band spectrally tuned on the rotaxane emission (405–650 nm). We observe a suppression of the luminescence within the photonic stop-band and a corresponding enhancement of the high-energy edge (405–447 nm). Time-resolved measurements reveal a wavelength-dependent modification of the emission lifetime, which is shortened at the high-energy edge (by ∼11%, in the range 405–447 nm), but elongated within the stop-band (by ∼13%, in the range 448–482 nm). We assign both effects to the modification of the density of photonic states induced by the photonic crystal band structure. We propose the growth of fluorescent composite photonic crystals from blends of “solvent-compatible” non-covalently bonded nanosphere-polymer systems as a general method for achieving a uniform distribution of polymeric dopants in three-dimensional self-assembling photonic structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/4/1.4826544.html;jsessionid=23j12lklk4qav.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/4/10.1063/1.4826544&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Fluorescent polystyrene photonic crystals self-assembled with water-soluble conjugated polyrotaxanes
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4826544
10.1063/1.4826544
SEARCH_EXPAND_ITEM