1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Mechanics of silicon nitride thin-film stressors on a transistor-like geometry
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/4/10.1063/1.4826545
1.
1. Y. Sun, S. E. Thompson, and T. Nishida, J. Appl. Phys. 101, 104503 (2007).
http://dx.doi.org/10.1063/1.2730561
2.
2. S. Flachowsky, A. Wei, R. Illgen, T. Herrmann, J. Höntschel, M. Horstmann, W. Klix, and R. Stenzel, IEEE Trans. Electron Devices 57, 13431354 (2010).
http://dx.doi.org/10.1109/TED.2010.2046461
3.
3. M. Chu, Y. Sun, U. Aghoram, and S. E. Thompson, Annu. Rev. Mater. Res. 39, 203229 (2009).
http://dx.doi.org/10.1146/annurev-matsci-082908-145312
4.
4. N. Xu, B. Ho, F. Andrieu, L. Smith, B.-Y. Nguyen, O. Weber, T. Poiroux, O. Faynot, and T.-J. King Liu, Electron Device Lett. 33, 318320 (2012).
http://dx.doi.org/10.1109/LED.2011.2179113
5.
5. F. Hüe, M. Hÿtch, F. Houdellier, H. Bender, and A. Claverie, Appl. Phys. Lett. 95, 073103 (2009).
http://dx.doi.org/10.1063/1.3192356
6.
6. C. E. Murray, Z. Ren, A. Ying, S. M. Polvino, I. C. Noyan, and Z. Cai, Appl. Phys. Lett. 94, 063502 (2009).
http://dx.doi.org/10.1063/1.3079656
7.
7. S.-M. Koh, G. S. Samudra, and Y.-C. Yeo, Appl. Phys. Lett. 97, 032111 (2010).
http://dx.doi.org/10.1063/1.3465661
8.
8. J. M. Hartmann, M. Py, P. H. Morel, T. Ernst, B. Prévitali, J. P. Barnes, N. Vulliet, N. Cherkashin, S. Reboh, M. Hÿtch, and V. Paillard, ECS Trans. 33(6), 391407 (2010).
http://dx.doi.org/10.1149/1.3487570
9.
9. K.-W. Ang, K.-J. Chui, V. Bliznetsov, C.-H. Tung, A. Du, N. Balasubramanian, G. Samudra, M. F. Li, and Y.-C. Yeo, Appl. Phys. Lett. 86, 093102 (2005).
http://dx.doi.org/10.1063/1.1871351
10.
10. M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, Nature (London) 453, 10861089 (2008).
http://dx.doi.org/10.1038/nature07049
11.
11. C. P. Wong, J. Kasim, J. P. Liu, A. See, and Z. X. Shen, Appl. Phys. Lett. 96, 213513 (2010).
http://dx.doi.org/10.1063/1.3431295
12.
12. T. Denneulin, D. Cooper, J.-M. Hartmann, and J.-L. Rouviere, J. Appl. Phys. 112, 094314 (2012).
http://dx.doi.org/10.1063/1.4764045
13.
13. S. Orain, V. Fiori, D. Villanueva, A. Dray, and C. Ortolland, IEEE Trans. Electron Devices 54(4), 814821 (2007).
http://dx.doi.org/10.1109/TED.2007.892026
14.
14. L. Pham-Nguyen, C. Fenouillet-Beranger, G. Ghibaudo, T. Skotnicki, and S. Cristoloveanu, Solid-State Electron. 54, 123130 (2010).
http://dx.doi.org/10.1016/j.sse.2009.12.006
15.
15. M. Cai, K. Ramani, M. Belyansky, B. Greene, D. H. Lee, S. Waidmann, F. Tamweber, and W. Henson, IEEE Trans. Electron Devices 57, 17061709 (2010).
http://dx.doi.org/10.1109/TED.2010.2049076
16.
16. W.-S. Liao, M.-C. Wang, Y. Hu, S.-H. Chen, K.-M. Chen,Y.-G. Liaw, C. Ye, W. Wang, D. Zhou, H. Wang, and H. Gu, Appl. Phys. Lett. 99, 173505 (2011).
http://dx.doi.org/10.1063/1.3657137
17.
17. D. Cooper, F. de la Peña, A. Béché, J.-L. Rouvière, G. Servanton, R. Pantel, and P. Morin, Nano Lett. 11, 45854590 (2011).
http://dx.doi.org/10.1021/nl201813w
18.
18. S. Reboh, P. Benzo, P. Morin, R. Cours, M. J. Hÿtch, and A. Claverie, Appl. Phys. Lett. 102, 051911 (2013).
http://dx.doi.org/10.1063/1.4790617
19.
19. G. C. A. M. Janssen, M. M. Abdalla, F. van Keulen, B. R. Pujada, and B. van Venrooy, Thin Solid Films 517(6), 18581867 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.07.014
20.
20. L. Clément, R. Pantel, L. F. Tz. Kwakman, and J. L. Rouvière, Appl. Phys. Lett. 85, 651 (2004).
http://dx.doi.org/10.1063/1.1774275
21.
21. M. Hÿtch, N. Cherkashin, S. Reboh, F. Houdellier, and A. Claverie, Phys. Status Solidi A 208(3), 580583 (2011).
http://dx.doi.org/10.1002/pssa.201000281
22.
22. A. Claverie, N. Cherkashin, F. Hue, S. Reboh, F. Houdellier, E. Snoeck, and M. Hÿtch, ECS Trans. 33(6), 4758 (2010).
http://dx.doi.org/10.1149/1.3487533
23.
23. A. Lubk, E. Javon, N. Cherkashin, S. Reboh, C. Gatel, and M. Hÿtch, Ultramicroscopy 136, 4249 (2014).
http://dx.doi.org/10.1016/j.ultramic.2013.07.007
24.
24. K. E. Petersen, Proc. IEEE 70(5), 420457 (1982).
http://dx.doi.org/10.1109/PROC.1982.12331
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4826545
Loading
/content/aip/journal/aplmater/1/4/10.1063/1.4826545
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/4/10.1063/1.4826545
2013-10-28
2014-07-22

Abstract

To understand the behavior of silicon nitride capping etch stopping layer stressors in nanoscale microelectronics devices, a simplified structure mimicking typical transistor geometries was studied. Elastic strains in the silicon substrate were mapped using dark-field electron holography. The results were interpreted with the aid of finite element method modeling. We show, in a counterintuitive sense, that the stresses developed by the film in the vertical sections around the transistor gate can reach much higher values than the full sheet reference. This is an important insight for advanced technology nodes where the vertical contribution of such liners is predominant over the horizontal part.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/4/1.4826545.html;jsessionid=24be8wq1f8t34.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/4/10.1063/1.4826545&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Mechanics of silicon nitride thin-film stressors on a transistor-like geometry
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/4/10.1063/1.4826545
10.1063/1.4826545
SEARCH_EXPAND_ITEM