Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/1/5/10.1063/1.4826937
1.
1. Q. M. Zhang, Nature (London) 419, 284 (2002).
http://dx.doi.org/10.1038/nature01021
2.
2. Z. M. Dang, Y. H. Lin, and C. W. Nan, Adv. Mater. 15, 1625 (2003).
http://dx.doi.org/10.1002/adma.200304911
3.
3. C. Huang, Q. M. Zhang, and J. Su, Appl. Phys. Lett. 82, 3502 (2003).
http://dx.doi.org/10.1063/1.1575505
4.
4. Z. M. Dang, Y. Shen, and C. W. Nan, Appl. Phys. Lett. 81, 4814 (2002).
http://dx.doi.org/10.1063/1.1529085
5.
5. Y. Shen, Y. Lin, M. Li, and C. W. Nan, Adv. Mater. 19, 1418 (2007).
http://dx.doi.org/10.1002/adma.200602097
6.
6. F. He, S. Lau, H. L. Chan, and J. Fan, Adv. Mater. 21, 710 (2009).
http://dx.doi.org/10.1002/adma.200801758
7.
7. F. Chen, C. Chu, J. He, Y. Yang, and J. Lin, Appl. Phys. Lett. 85, 3295 (2004).
http://dx.doi.org/10.1063/1.1806283
8.
8. Y. Rao, S. Ogitani, P. Khol, and C. P. Wong, J. Appl. Polym. Sci. 83, 1084 (2002).
http://dx.doi.org/10.1002/app.10082
9.
9. M. Rahimabady, S. Chen, K. Yao, F. E. H. Tay, and L. Liu, Appl. Phys. Lett. 99, 142901 (2011).
http://dx.doi.org/10.1063/1.3645619
10.
10. C. Huang, Q. M. Zhang, G. deBotton, and K. Bhattacharya, Appl. Phys. Lett. 84, 4391 (2004).
http://dx.doi.org/10.1063/1.1757632
11.
11. Z. M. Dang, J. K. Yuan, S. H. Yao, and R. J. Liao, “Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage,” Adv. Mater. (published online).
http://dx.doi.org/10.1002/adma.201301752
12.
12. Z. M. Dang, J. K. Yuan, J. W. Zha, T. Zhou, S. T. Li, and G. H. Hu, Prog. Mater. Sci. 57, 660 (2012).
http://dx.doi.org/10.1016/j.pmatsci.2011.08.001
13.
13. Z. M. Dang, Y. Q. Lin, H. P. Xu, C. Y. Shi, S. T. Li, and J. Bai, Adv. Funct. Mater. 18, 1509 (2008).
http://dx.doi.org/10.1002/adfm.200701077
14.
14. S. U. Adikary, H. L. W. Chan, C. L. Choy, B. Sundaravel, and I. H. Wilson, Compos Sci. Technol. 62, 2161 (2002).
http://dx.doi.org/10.1016/S0266-3538(02)00149-5
15.
15. Z. M. Dang, Y. F. Yu, H. P. Xu, and J. Bai, Compos. Sci. Technol. 68, 171 (2008).
http://dx.doi.org/10.1016/j.compscitech.2007.05.021
16.
16. Z. M. Dang, H. Y. Wang, and H. P. Xu, Appl. Phys. Lett. 89, 112902 (2006).
http://dx.doi.org/10.1063/1.2338529
17.
17. Y. Shen, Y. H. Lin, and C. W. Nan, Adv. Funct. Mater. 17, 2405 (2007).
http://dx.doi.org/10.1002/adfm.200700200
18.
18. L. Qi, B. I. Lee, S. H. Chen, W. D. Samuels, and G. J. Exarhos, Adv. Mater. 17, 1777 (2005).
http://dx.doi.org/10.1002/adma.200401816
19.
19. F. Deng, Q. S. Zheng, L. F. Wang, and C. W. Nan, Appl. Phys. Lett. 90, 021914 (2007).
http://dx.doi.org/10.1063/1.2430914
20.
20. S. H. Yao, Z. M. Dang, M. J. Jiang, and H. P. Xu, Appl. Phys. Lett. 91, 212901 (2007).
http://dx.doi.org/10.1063/1.2817746
21.
21. J. W. Xu and C. P. Wong, Appl. Phys. Lett. 87, 082907 (2005).
http://dx.doi.org/10.1063/1.2032597
22.
22. Z. M. Dang, Y. Shen, L. Z. Fang, N. Cai, and C. W. Nan, J. Appl. Phys. 93, 5543 (2003).
http://dx.doi.org/10.1063/1.1562740
23.
23. A. Celzard, E. McRae, C. Deleuze, and M. Dufort, Phys. Rev. B 53, 6209 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.6209
24.
24. Y. Song, Y. Shen, P. H. Hu, Y. H. Lin, and M. Li, Appl. Phys. Lett. 101, 152904 (2012).
http://dx.doi.org/10.1063/1.4760228
25.
25. S. H. Xie, Y. Y. Liu, and J. Y. Li, Appl. Phys. Lett. 92, 243121 (2008).
http://dx.doi.org/10.1063/1.2949074
26.
26. N. Levi, R. Czerw, S. Xing, P. Lyer, and D. L. Carroll, Nano. Lett. 4, 1267 (2004).
http://dx.doi.org/10.1021/nl0494203
27.
27. C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Science 293, 673 (2001).
http://dx.doi.org/10.1126/science.1061655
28.
28. Z. M. Dang, T. Zhou, S. H. Yao, J. K. Yuan, and J. W. Zha, Adv. Mater. 21, 2077 (2009).
http://dx.doi.org/10.1002/adma.200803427
29.
29. W. H. Yang, S. H. Yu, R. Sun, and R. X. Du, Acta Mater. 59, 5593 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.05.034
30.
30. B. S. Prakash and K. B. R. Varma, Compos. Sci. Technol. 67, 2363 (2007).
http://dx.doi.org/10.1016/j.compscitech.2007.01.010
31.
31. D. Qin, G. Z. Liang, and A. J. Gu, J. Alloys Compd. 549, 11 (2013).
http://dx.doi.org/10.1016/j.jallcom.2012.09.083
32.
32. H. X. Tang, Y. R. Lin, C. Andrews, and H. A. Sodano, Nanotechnology 22, 015702 (2011).
http://dx.doi.org/10.1088/0957-4484/22/1/015702
33.
33. J. Y. Yi and G. M. Choi, J. Electroceram. 3, 361 (1999).
http://dx.doi.org/10.1023/A:1009913913732
34.
34. Y. Yang, B. P. Zhu, Z. H. Lu, and R. Xiong, Appl. Phys. Lett. 102, 042904 (2013).
http://dx.doi.org/10.1063/1.4789504
35.
35. G. N. S. Vijayakumar, S. Devashankar, M. Rathnakumari, and P. Sureshkumar, J. Alloys Compd. 507, 225 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.07.161
36.
36. D. Li and Y. N. Xia, Adv. Mater. 16, 1151 (2004).
http://dx.doi.org/10.1002/adma.200400719
37.
37. H. B. Zhang and M. J. Edirisinghew, J. Am. Ceram. Soc. 89, 1870 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2006.01038.x
38.
38. J. A. Kreuz and J. R. Edman, Adv. Mater. 10, 1229 (1998).
http://dx.doi.org/10.1002/(SICI)1521-4095(199810)10:15<1229::AID-ADMA1229>3.0.CO;2-B
39.
39. S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, Phys. Rev. Lett. 90, 144502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.144502
40.
40. P. Ramireza, M. A. Subramanianb, M. Gardela, G. Blumberga, and D. Lib, Solid State Commun. 115, 217 (2000).
http://dx.doi.org/10.1016/S0038-1098(00)00182-4
41.
41. A. Peigney, C. Laurent, E. Flahaunt, R. R. Bacsa, and A. Rousset, Carbon 39, 507 (2001).
http://dx.doi.org/10.1016/S0008-6223(00)00155-X
42.
42. Z. M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q. Q. Lei, Adv. Mater. 19, 852 (2007).
http://dx.doi.org/10.1002/adma.200600703
43.
43. C. W. Nan, Y. Shen, and J. Ma, Annu. Rev. Mater. Res. 40, 131 (2010).
http://dx.doi.org/10.1146/annurev-matsci-070909-104529
44.
44. Y. Rao, J. Qu, T. Marinis, and C. P. Wong, IEEE Trans. Compon. Packag. Technol. 23, 434 (2000).
http://dx.doi.org/10.1109/6144.868841
45.
45. D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed. (Taylor and Francis, London, 1992).
46.
46. C. W. Nan, Prog. Mater. Sci. 37, 1 (1993).
http://dx.doi.org/10.1016/0079-6425(93)90004-5
47.
47. R. H. Schmidt, I. A. Kinloch, A. N. Burgess, and A. H. Windle, Langmuir 23, 5707 (2007).
http://dx.doi.org/10.1021/la062794m
48.
48. A. L. R. Bug, S. A. Safran, and I. Webman, Phys. Rev. Lett. 54, 1412 (1985).
http://dx.doi.org/10.1103/PhysRevLett.54.1412
49.
49. M. Sahimi, Applications of Percolation Theory (Taylor and Francis, London, 1994).
50.
50. I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Phys. Rev. B 30, 3933 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.3933
51.
51. I. Balberg, N. Binenbaum, and N. Wagner, Phys. Rev. Lett. 52, 1465 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.1465
52.
52. F. Carmona, P. Prudhon, and F. Barreau, Solid State Commun. 51, 255 (1984).
http://dx.doi.org/10.1016/0038-1098(84)91008-1
53.
53. L. Berhan and A. M. Sastry, Phys. Rev. E 75, 041120 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.041120
54.
54. Z. Neda, R. Florian, and Y. Brechet, Phys. Rev. E 59, 3717 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.3717
55.
55. J. M. Benoit, B. Corraze, and O. Chauvet, Phys. Rev. B 65, 241405 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.241405
56.
56. F. M. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, Macromolecules 37, 9048 (2004).
http://dx.doi.org/10.1021/ma049164g
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4826937
Loading
/content/aip/journal/aplmater/1/5/10.1063/1.4826937
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4826937
2013-11-01
2016-09-27

Abstract

This work reports the excellent dielectric properties of polyimide (PI) embedded with CaCuTiO (CCTO) nanofibers. The dielectric behaviors were investigated over a frequency of 100 Hz–1 MHz. It is shown that embedding CCTO nanofibers with high aspect ratio (67) is an effective means to enhance the dielectric permittivity and reduce the percolation threshold. The dielectric permittivity of PI/CCTO nanofiber composites is 85 with 1.5 vol.% loading of filler, also the dielectric loss is only 0.015 at 100 Hz. Monte Carlo simulation was used to investigate the percolation threshold of CCTO nanofibers reinforced polyimide matrix by using excluded volume theory and soft, hard-core models. The results are in good agreement with the percolation theory and the hard-core model can well explain the percolation phenomena in PI/CCTO nanofiber composites. The dielectric properties of the composites will meet the practical requirements for the application in high dielectric constant capacitors and high energy density materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4826937.html;jsessionid=K1C_4BMqZsMfskuus8YDBlgf.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4826937&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/1/5/10.1063/1.4826937&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/1/5/10.1063/1.4826937'
Top,Right1,Right2,Right3,