AIP Publishing will apply a patch on 07-MAY-2015 at 10pm China time to its manuscript submission and processing system (PXP) to correct an intermittent connectivity issue for users in China. Ahead of this patch if you have any urgent issues please contact us at

为中国用户提供论文投稿系统 (PXP)的更新 AIP出版公司将于2015年5月7日晚上10点(北京时间)为中国用户提供论文投稿系统(PXP)的补丁用以修正前期出现的连接问题。 在补丁发布之前,如您有紧急问题请与我们联系:

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. J. Snyder and E. S. Toberer, Nature Mater. 7(2), 105 (2008).
2. L. E. Bell, Science 321(5895), 1457 (2008).
3. H. Liu, X. Shi, M. Kirkham, H. Wang, Q. Li, C. Uher, W. Zhang, and L. Chen, Mater. Lett. 93, 121 (2013).
4. C. Goupil, W. Seifert, K. Zabrocki, E. Muller, and G. J. Snyder, Entropy 13(8), 1481 (2011).
5. R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Jpn. 12(11), 1203 (1957).
6. D. Emin, Phys. Rev. B 59(9), 6205 (1999).
7. A. L. Rockwood, Phys. Rev. A 30(5), 2843 (1984);
7.P. M. Chaikin and G. Beni, Phys. Rev. B 13(2), 647 (1976).
8. Y. Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Nature (London) 423(6938), 425 (2003).
9. W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62(11), 6869 (2000);
9.S. Mukerjee and J. E. Moore, Appl. Phys. Lett. 90(11), 112107 (2007).
10. S. Mukerjee, Phys. Rev. B 72(19), 195109 (2005).
11. C. N. R. Rao and K. J. Rao, Phase Transitions in Solids : An Approach to the Study of the Chemistry and Physics of Solids (McGraw-Hill, New York, 1978).
12. F. Elakkad, B. Mansour, and T. Hendeya, Mater. Res. Bull. 16(5), 535 (1981).
13. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G. J. Snyder, Nature Mater. 11(5), 422 (2012).
14. M. Horvatic and Z. Vucic, Solid State Ionics 13(2), 117 (1984).
15. S. Kashida and J. Akai, J. Phys. C 21(31), 5329 (1988).
16. Z. Vučić, O. Milat, V. Horvatić, and Z. Ogorelec, Phys. Rev. B 24(9), 5398 (1981).
17. N. N. Sirota, M. A. Korzhuev, M. A. Lobzov, N. K. Abrikosov, and V. F. Bankina, Dokl. Akad. Nauk SSSR 281(1), 75 (1985).
18. J. B. Boyce and B. A. Huberman, Phys. Rep. 51(4), 189 (1979).
19. F. L. Lederman, M. B. Salamon, and H. Peisl, Solid State Commun. 19(2), 147 (1976).
20. M. A. Korzhuev and A. V. Laptev, Fiz. Tverd. Tela (Leningrad) 29(9), 2646 (1987).
21.See supplementary material at for thermoelectric Cu2Se. [Supplementary Material]
22. D. R. Brown, T. Day, T. Caillat, and G. J. Snyder, J. Electron. Mater. 42(7), 2014 (2013).
23. V. A. Chatov, T. P. Iorga, and P. N. Inglizyan, Sov. Phys. Semicond 14(4), 474 (1980).
24. K. Yamamoto and S. Kashida, Solid State Ionics 48(3-4), 241 (1991).
25. S. A. Danilkin, M. Avdeev, T. Sakuma, R. Macquart, C. D. Ling, M. Rusina, and Z. Izaola, Ionics 17(1), 75 (2011).
26. Z. Vucic, V. Horvatic, and Z. Ogorelec, J. Phys. C 15(16), 3539 (1982).
27. S. Ballikaya, H. Chi, J. R. Salvador, and C. Uher, J. Mater. Chem. A 1(40), 12478 (2013).
28. Z. Ogorelec and B. Celustka, J. Phys. Chem. Solids 27(3), 615 (1966);
28.K. Okamoto, Jpn. J. Appl. Phys. 10(4), 508 (1971);
28.X. X. Xiao, W. J. Xie, X. F. Tang, and Q. J. Zhang, Chin. Phys. B 20(8), 087201 (2011);
28.G. Bush and P. Junod, Helv. Phys. Acta 32, 567 (1959).
29. C. Xiao, J. Xu, K. Li, J. Feng, J. Yang, and Y. Xie, J. Am. Chem. Soc. 134(9), 4287 (2012).
30. F. Gascoin and A. Maignan, Chem. Mater. 23(10), 2510 (2011).
31. M. Kusakabe, Y. Ito, and S. Tamaki, J. Phys. Condens. Matter 8(37), 6851 (1996).
32. M. Jaime, M. B. Salamon, K. Pettit, M. Rubinstein, R. E. Treece, J. S. Horwitz, and D. B. Chrisey, Appl. Phys. Lett. 68(11), 1576 (1996);
32.C. J. Liu, C. S. Sheu, T. W. Wu, L. C. Huang, F. H. Hsu, H. D. Yang, G. V. M. Williams, and C. J. C. Liu, Phys. Rev. B 71(1), 014502 (2005).
33. M. K. Balapanov, I. B. Zinnurov, and G. R. Akmanova, Phys. Solid State 48(10), 1868 (2006).

Data & Media loading...


Article metrics loading...



While thermoelectric materials can be used for solid state cooling, waste heat recovery, and solar electricity generation, low values of the thermoelectric figure of merit, , have led to an efficiency too low for widespread use. Thermoelectric effects are characterized by the Seebeck coefficient or thermopower, which is related to the entropy associated with charge transport. For example, coupling spin entropy with the presence of charge carriers has enabled the enhancement of in cobalt oxides. We demonstrate that the coupling of a continuous phase transition to carrier transport in Cu Se over a broad (360–410 K) temperature range results in a dramatic peak in thermopower, an increase in phonon and electron scattering, and a corresponding doubling of (to 0.7 at 406 K), and a similar but larger increase over a wider temperature range in the of Cu Ag Se (almost 1.0 at 400 K). The use of structural entropy for enhanced thermopower could lead to new engineering approaches for thermoelectric materials with high and new green applications for thermoelectrics.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides