1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/5/10.1063/1.4827595
1.
1. G. J. Snyder and E. S. Toberer, Nature Mater. 7(2), 105 (2008).
http://dx.doi.org/10.1038/nmat2090
2.
2. L. E. Bell, Science 321(5895), 1457 (2008).
http://dx.doi.org/10.1126/science.1158899
3.
3. H. Liu, X. Shi, M. Kirkham, H. Wang, Q. Li, C. Uher, W. Zhang, and L. Chen, Mater. Lett. 93, 121 (2013).
http://dx.doi.org/10.1016/j.matlet.2012.11.058
4.
4. C. Goupil, W. Seifert, K. Zabrocki, E. Muller, and G. J. Snyder, Entropy 13(8), 1481 (2011).
http://dx.doi.org/10.3390/e13081481
5.
5. R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Jpn. 12(11), 1203 (1957).
http://dx.doi.org/10.1143/JPSJ.12.1203
6.
6. D. Emin, Phys. Rev. B 59(9), 6205 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.6205
7.
7. A. L. Rockwood, Phys. Rev. A 30(5), 2843 (1984);
http://dx.doi.org/10.1103/PhysRevA.30.2843
7.P. M. Chaikin and G. Beni, Phys. Rev. B 13(2), 647 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.647
8.
8. Y. Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Nature (London) 423(6938), 425 (2003).
http://dx.doi.org/10.1038/nature01639
9.
9. W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62(11), 6869 (2000);
http://dx.doi.org/10.1103/PhysRevB.62.6869
9.S. Mukerjee and J. E. Moore, Appl. Phys. Lett. 90(11), 112107 (2007).
http://dx.doi.org/10.1063/1.2712775
10.
10. S. Mukerjee, Phys. Rev. B 72(19), 195109 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.195109
11.
11. C. N. R. Rao and K. J. Rao, Phase Transitions in Solids : An Approach to the Study of the Chemistry and Physics of Solids (McGraw-Hill, New York, 1978).
12.
12. F. Elakkad, B. Mansour, and T. Hendeya, Mater. Res. Bull. 16(5), 535 (1981).
http://dx.doi.org/10.1016/0025-5408(81)90119-7
13.
13. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G. J. Snyder, Nature Mater. 11(5), 422 (2012).
http://dx.doi.org/10.1038/nmat3273
14.
14. M. Horvatic and Z. Vucic, Solid State Ionics 13(2), 117 (1984).
http://dx.doi.org/10.1016/0167-2738(84)90045-6
15.
15. S. Kashida and J. Akai, J. Phys. C 21(31), 5329 (1988).
http://dx.doi.org/10.1088/0022-3719/21/31/004
16.
16. Z. Vučić, O. Milat, V. Horvatić, and Z. Ogorelec, Phys. Rev. B 24(9), 5398 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.5398
17.
17. N. N. Sirota, M. A. Korzhuev, M. A. Lobzov, N. K. Abrikosov, and V. F. Bankina, Dokl. Akad. Nauk SSSR 281(1), 75 (1985).
18.
18. J. B. Boyce and B. A. Huberman, Phys. Rep. 51(4), 189 (1979).
http://dx.doi.org/10.1016/0370-1573(79)90067-X
19.
19. F. L. Lederman, M. B. Salamon, and H. Peisl, Solid State Commun. 19(2), 147 (1976).
http://dx.doi.org/10.1016/0038-1098(76)90455-5
20.
20. M. A. Korzhuev and A. V. Laptev, Fiz. Tverd. Tela (Leningrad) 29(9), 2646 (1987).
21.
21.See supplementary material at http://dx.doi.org/10.1063/1.4827595 for thermoelectric Cu2Se. [Supplementary Material]
22.
22. D. R. Brown, T. Day, T. Caillat, and G. J. Snyder, J. Electron. Mater. 42(7), 2014 (2013).
http://dx.doi.org/10.1007/s11664-013-2506-2
23.
23. V. A. Chatov, T. P. Iorga, and P. N. Inglizyan, Sov. Phys. Semicond 14(4), 474 (1980).
24.
24. K. Yamamoto and S. Kashida, Solid State Ionics 48(3-4), 241 (1991).
http://dx.doi.org/10.1016/0167-2738(91)90038-D
25.
25. S. A. Danilkin, M. Avdeev, T. Sakuma, R. Macquart, C. D. Ling, M. Rusina, and Z. Izaola, Ionics 17(1), 75 (2011).
http://dx.doi.org/10.1007/s11581-010-0489-z
26.
26. Z. Vucic, V. Horvatic, and Z. Ogorelec, J. Phys. C 15(16), 3539 (1982).
http://dx.doi.org/10.1088/0022-3719/15/16/013
27.
27. S. Ballikaya, H. Chi, J. R. Salvador, and C. Uher, J. Mater. Chem. A 1(40), 12478 (2013).
http://dx.doi.org/10.1039/C3TA12508D
28.
28. Z. Ogorelec and B. Celustka, J. Phys. Chem. Solids 27(3), 615 (1966);
http://dx.doi.org/10.1016/0022-3697(66)90208-3
28.K. Okamoto, Jpn. J. Appl. Phys. 10(4), 508 (1971);
http://dx.doi.org/10.1143/JJAP.10.508
28.X. X. Xiao, W. J. Xie, X. F. Tang, and Q. J. Zhang, Chin. Phys. B 20(8), 087201 (2011);
http://dx.doi.org/10.1088/1674-1056/20/8/087201
28.G. Bush and P. Junod, Helv. Phys. Acta 32, 567 (1959).
29.
29. C. Xiao, J. Xu, K. Li, J. Feng, J. Yang, and Y. Xie, J. Am. Chem. Soc. 134(9), 4287 (2012).
http://dx.doi.org/10.1021/ja2104476
30.
30. F. Gascoin and A. Maignan, Chem. Mater. 23(10), 2510 (2011).
http://dx.doi.org/10.1021/cm200581k
31.
31. M. Kusakabe, Y. Ito, and S. Tamaki, J. Phys. Condens. Matter 8(37), 6851 (1996).
http://dx.doi.org/10.1088/0953-8984/8/37/007
32.
32. M. Jaime, M. B. Salamon, K. Pettit, M. Rubinstein, R. E. Treece, J. S. Horwitz, and D. B. Chrisey, Appl. Phys. Lett. 68(11), 1576 (1996);
http://dx.doi.org/10.1063/1.116686
32.C. J. Liu, C. S. Sheu, T. W. Wu, L. C. Huang, F. H. Hsu, H. D. Yang, G. V. M. Williams, and C. J. C. Liu, Phys. Rev. B 71(1), 014502 (2005).
http://dx.doi.org/10.1103/Physrevb.71.014502
33.
33. M. K. Balapanov, I. B. Zinnurov, and G. R. Akmanova, Phys. Solid State 48(10), 1868 (2006).
http://dx.doi.org/10.1134/S1063783406100076
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4827595
Loading
/content/aip/journal/aplmater/1/5/10.1063/1.4827595
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4827595
2013-11-14
2014-09-18

Abstract

While thermoelectric materials can be used for solid state cooling, waste heat recovery, and solar electricity generation, low values of the thermoelectric figure of merit, , have led to an efficiency too low for widespread use. Thermoelectric effects are characterized by the Seebeck coefficient or thermopower, which is related to the entropy associated with charge transport. For example, coupling spin entropy with the presence of charge carriers has enabled the enhancement of in cobalt oxides. We demonstrate that the coupling of a continuous phase transition to carrier transport in Cu Se over a broad (360–410 K) temperature range results in a dramatic peak in thermopower, an increase in phonon and electron scattering, and a corresponding doubling of (to 0.7 at 406 K), and a similar but larger increase over a wider temperature range in the of Cu Ag Se (almost 1.0 at 400 K). The use of structural entropy for enhanced thermopower could lead to new engineering approaches for thermoelectric materials with high and new green applications for thermoelectrics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4827595.html;jsessionid=6hl9a6gb7l88q.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4827595&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4827595
10.1063/1.4827595
SEARCH_EXPAND_ITEM