1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Untilting BiFeO3: The influence of substrate boundary conditions in ultra-thin BiFeO3 on SrTiO3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/5/10.1063/1.4827596
1.
1. J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. Waghmare, N. A. Spaldin, K. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
2.
2. R. Zeches, M. Rossell, J. Zhang, A. Hatt, Q. He, C. Yang, A. Kumar, C. Wang, A. Melville, C. Adamo, G. Sheng, Y. Chu, J. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Chen, D. G. Schlom, N. A. Spaldin, L. Martin, and R. Ramesh, Science 326, 977 (2009).
http://dx.doi.org/10.1126/science.1177046
3.
3. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).
http://dx.doi.org/10.1002/adma.200802849
4.
4. H. Béa, B. Dupé, S. Fusil, R. Mattana, E. Jacquet, B. Warot-Fonrose, F. Wilhelm, A. Rogalev, S. Petit, V. Cros, A. Anane, F. Petroff, K. Bouzehouane, G. Geneste, B. Dkhil, S. Lisenkov, I. Ponomareva, L. Bellaiche, M. Bibes, and A. Barthélémy, Phys. Rev. Lett. 102, 217603 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.217603
5.
5. A. J. Hatt, N. A. Spaldin, and C. Ederer, Phys. Rev. B 81, 054109 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.054109
6.
6. M. B. Holcomb, L. W. Martin, A. Scholl, Q. He, P. Yu, C.-H. Yang, S. Y. Yang, P.-A. Glans, M. Valvidares, M. Huijben, J. B. Kortright, J. Guo, Y.-H. Chu, and R. Ramesh, Phys. Rev. B 81, 134406 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.134406
7.
7. Z. Chen, Z. Luo, C. Huang, Y. Qi, P. Yang, L. You, C. Hu, T. Wu, J. Wang, C. Gao, T. Sritharan, and L. Chen, Adv. Funct. Mater. 21, 133 (2011).
http://dx.doi.org/10.1002/adfm.201001867
8.
8. H. Christen, J. Nam, H. Kim, A. Hatt, and N. Spaldin, Phys. Rev. B 83, 144107 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.144107
9.
9. F. Johann, A. Morelli, D. Biggemann, M. Arredondo, and I. Vrejoiu, Phys. Rev. B 84, 094105 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.094105
10.
10. J. M. Rondinelli, S. J. May, and J. W. Freeland, Mater. Res. Soc. Bull. 37, 261 (2012).
http://dx.doi.org/10.1557/mrs.2012.49
11.
11. C. J. M. Daumont, S. Farokhipoor, A. Ferri, J. C. Wojdeł, J. Íñiguez, B. J. Kooi, and B. Noheda, Phys. Rev. B 81, 144115 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.144115
12.
12. A. M. Glazer, Acta Cryst. A 31, 756 (1975).
http://dx.doi.org/10.1107/S0567739475001635
13.
13. F. Kubel and H. Schmid, Acta Cryst. B 46, 698 (1990).
http://dx.doi.org/10.1107/S0108768190006887
14.
14. G. Xu, H. Hiraka, G. Shirane, J. Li, J. Wang, and D. Viehland, Appl. Phys. Lett. 86, 182905 (2005).
http://dx.doi.org/10.1063/1.1924891
15.
15. A. Y. Borisevich, H. J. Chang, M. Huijben, M. P. Oxley, S. Okamoto, M. K. Niranjan, J. D. Burton, E. Y. Tsymbal, Y. H. Chu, P. Yu, R. Ramesh, S. V. Kalinin, and S. J. Pennycook, Phys. Rev. Lett. 105, 087204 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.087204
16.
16. S. H. Chang, Y. J. Chang, S. Y. Jang, D. W. Jeong, C. U. Jung, Y.-J. Kim, J.-S. Chung, and T. W. Noh, Phys. Rev. B 84, 104101 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.104101
17.
17. J. M. Rondinelli and N. A. Spaldin, Phys. Rev. B 82, 113402 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.113402
18.
18. K. Saito, A. Ulyanenkov, V. Grossmann, H. Ress, L. Bruegemann, H. Ohta, T. Kurosawa, S. Ueki, and H. Funakubo, Jpn. J. Appl. Phys. 45, 7311 (2006).
http://dx.doi.org/10.1143/JJAP.45.7311
19.
19. Y. H. Chu, T. Zhao, M. P. Cruz, Q. Zhan, P. L. Yang, L. W. Martin, M. Huijben, C. H. Yang, F. Zavaliche, H. Zheng, and R. Ramesh, Appl. Phys. Lett. 90, 252906 (2007).
http://dx.doi.org/10.1063/1.2750524
20.
20. H. Liu, P. Yang, K. Yao, and J. Wang, Appl. Phys. Lett. 98, 102902 (2011).
http://dx.doi.org/10.1063/1.3561757
21.
21. H. Liu, P. Yang, K. Yao, K. P. Ong, P. Wu, and J. Wang, Adv. Funct. Mater. 22, 937 (2012).
http://dx.doi.org/10.1002/adfm.201101970
22.
22. J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom, Appl. Phys. Lett. 92, 142908 (2008).
http://dx.doi.org/10.1063/1.2901160
23.
23. C. T. Nelson, B. Winchester, Y. Zhang, S.-J. Kim, A. Melville, C. Adamo, C. M. Folkman, S.-H. Baek, C.-B. Eom, D. G. Schlom, L.-Q. Chen, and X. Pan, Nano Lett. 11, 828 (2011).
http://dx.doi.org/10.1021/nl1041808
24.
24. P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, B. Henrich, I. Johnson, A. Mozzanica, C. M. Schlepütz, P. R. Willmott, and B. Schmitt, J. Synchrotron Radiat. 16, 368 (2009).
http://dx.doi.org/10.1107/S0909049509009911
25.
25. C. M. Schlepütz, R. Herger, P. R. Willmott, B. D. Patterson, O. Bunk, C. Brönnimann, B. Henrich, G. Hülsen, and E. F. Eikenberry, Acta Cryst. A 61, 418 (2005).
http://dx.doi.org/10.1107/S0108767305014790
26.
26. C. M. Schlepütz, S. O. Mariager, S. A. Pauli, R. Feidenhans'l, and P. R. Willmott, J. Appl. Crystallogr. 44, 73 (2011).
http://dx.doi.org/10.1107/S0021889810048922
27.
27. W. Siemons, M. D. Biegalski, J. H. Nam, and H. M. Christen, Appl. Phys. Express 4, 095801 (2011).
http://dx.doi.org/10.1143/APEX.4.095801
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4827596
Loading
/content/aip/journal/aplmater/1/5/10.1063/1.4827596
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4827596
2013-11-06
2014-10-02

Abstract

We report on the role of oxygen octahedral tilting in the monoclinic-to-tetragonal phase transition in ultra-thin BiFeO films grown on (001) SrTiO substrates. Reciprocal space maps clearly show the disappearance of the integer-order Bragg peak splitting associated with the monoclinic phase when the film thickness decreases below 20 unit cells. This monoclinic-to-tetragonal transition is accompanied by the evolution of the half-order diffraction peaks, which reflects untilting of the oxygen octahedra around the [110] axis, proving that the octahedral tilting is closely correlated with the transition. This structural change is thickness-dependent, and different from a strain-induced transition in the conventional sense.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4827596.html;jsessionid=43mgu36dlrit8.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4827596&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Untilting BiFeO3: The influence of substrate boundary conditions in ultra-thin BiFeO3 on SrTiO3
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4827596
10.1063/1.4827596
SEARCH_EXPAND_ITEM