Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. Waghmare, N. A. Spaldin, K. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
2. R. Zeches, M. Rossell, J. Zhang, A. Hatt, Q. He, C. Yang, A. Kumar, C. Wang, A. Melville, C. Adamo, G. Sheng, Y. Chu, J. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Chen, D. G. Schlom, N. A. Spaldin, L. Martin, and R. Ramesh, Science 326, 977 (2009).
3. G. Catalan and J. F. Scott, Adv. Mater. 21, 2463 (2009).
4. H. Béa, B. Dupé, S. Fusil, R. Mattana, E. Jacquet, B. Warot-Fonrose, F. Wilhelm, A. Rogalev, S. Petit, V. Cros, A. Anane, F. Petroff, K. Bouzehouane, G. Geneste, B. Dkhil, S. Lisenkov, I. Ponomareva, L. Bellaiche, M. Bibes, and A. Barthélémy, Phys. Rev. Lett. 102, 217603 (2009).
5. A. J. Hatt, N. A. Spaldin, and C. Ederer, Phys. Rev. B 81, 054109 (2010).
6. M. B. Holcomb, L. W. Martin, A. Scholl, Q. He, P. Yu, C.-H. Yang, S. Y. Yang, P.-A. Glans, M. Valvidares, M. Huijben, J. B. Kortright, J. Guo, Y.-H. Chu, and R. Ramesh, Phys. Rev. B 81, 134406 (2010).
7. Z. Chen, Z. Luo, C. Huang, Y. Qi, P. Yang, L. You, C. Hu, T. Wu, J. Wang, C. Gao, T. Sritharan, and L. Chen, Adv. Funct. Mater. 21, 133 (2011).
8. H. Christen, J. Nam, H. Kim, A. Hatt, and N. Spaldin, Phys. Rev. B 83, 144107 (2011).
9. F. Johann, A. Morelli, D. Biggemann, M. Arredondo, and I. Vrejoiu, Phys. Rev. B 84, 094105 (2011).
10. J. M. Rondinelli, S. J. May, and J. W. Freeland, Mater. Res. Soc. Bull. 37, 261 (2012).
11. C. J. M. Daumont, S. Farokhipoor, A. Ferri, J. C. Wojdeł, J. Íñiguez, B. J. Kooi, and B. Noheda, Phys. Rev. B 81, 144115 (2010).
12. A. M. Glazer, Acta Cryst. A 31, 756 (1975).
13. F. Kubel and H. Schmid, Acta Cryst. B 46, 698 (1990).
14. G. Xu, H. Hiraka, G. Shirane, J. Li, J. Wang, and D. Viehland, Appl. Phys. Lett. 86, 182905 (2005).
15. A. Y. Borisevich, H. J. Chang, M. Huijben, M. P. Oxley, S. Okamoto, M. K. Niranjan, J. D. Burton, E. Y. Tsymbal, Y. H. Chu, P. Yu, R. Ramesh, S. V. Kalinin, and S. J. Pennycook, Phys. Rev. Lett. 105, 087204 (2010).
16. S. H. Chang, Y. J. Chang, S. Y. Jang, D. W. Jeong, C. U. Jung, Y.-J. Kim, J.-S. Chung, and T. W. Noh, Phys. Rev. B 84, 104101 (2011).
17. J. M. Rondinelli and N. A. Spaldin, Phys. Rev. B 82, 113402 (2010).
18. K. Saito, A. Ulyanenkov, V. Grossmann, H. Ress, L. Bruegemann, H. Ohta, T. Kurosawa, S. Ueki, and H. Funakubo, Jpn. J. Appl. Phys. 45, 7311 (2006).
19. Y. H. Chu, T. Zhao, M. P. Cruz, Q. Zhan, P. L. Yang, L. W. Martin, M. Huijben, C. H. Yang, F. Zavaliche, H. Zheng, and R. Ramesh, Appl. Phys. Lett. 90, 252906 (2007).
20. H. Liu, P. Yang, K. Yao, and J. Wang, Appl. Phys. Lett. 98, 102902 (2011).
21. H. Liu, P. Yang, K. Yao, K. P. Ong, P. Wu, and J. Wang, Adv. Funct. Mater. 22, 937 (2012).
22. J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom, Appl. Phys. Lett. 92, 142908 (2008).
23. C. T. Nelson, B. Winchester, Y. Zhang, S.-J. Kim, A. Melville, C. Adamo, C. M. Folkman, S.-H. Baek, C.-B. Eom, D. G. Schlom, L.-Q. Chen, and X. Pan, Nano Lett. 11, 828 (2011).
24. P. Kraft, A. Bergamaschi, C. Broennimann, R. Dinapoli, E. F. Eikenberry, B. Henrich, I. Johnson, A. Mozzanica, C. M. Schlepütz, P. R. Willmott, and B. Schmitt, J. Synchrotron Radiat. 16, 368 (2009).
25. C. M. Schlepütz, R. Herger, P. R. Willmott, B. D. Patterson, O. Bunk, C. Brönnimann, B. Henrich, G. Hülsen, and E. F. Eikenberry, Acta Cryst. A 61, 418 (2005).
26. C. M. Schlepütz, S. O. Mariager, S. A. Pauli, R. Feidenhans'l, and P. R. Willmott, J. Appl. Crystallogr. 44, 73 (2011).
27. W. Siemons, M. D. Biegalski, J. H. Nam, and H. M. Christen, Appl. Phys. Express 4, 095801 (2011).

Data & Media loading...


Article metrics loading...



We report on the role of oxygen octahedral tilting in the monoclinic-to-tetragonal phase transition in ultra-thin BiFeO films grown on (001) SrTiO substrates. Reciprocal space maps clearly show the disappearance of the integer-order Bragg peak splitting associated with the monoclinic phase when the film thickness decreases below 20 unit cells. This monoclinic-to-tetragonal transition is accompanied by the evolution of the half-order diffraction peaks, which reflects untilting of the oxygen octahedra around the [110] axis, proving that the octahedral tilting is closely correlated with the transition. This structural change is thickness-dependent, and different from a strain-induced transition in the conventional sense.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd