1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Effects of electrode material and configuration on the characteristics of planar resistive switching devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/5/10.1063/1.4827597
1.
1. R. Waser and M. Aono, Nature Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
2.
2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature (London) 453, 80 (2008).
http://dx.doi.org/10.1038/nature06932
3.
3. F. Zhuge, S. S. Peng, C. L. He, X. J. Zhu, X. X. Chen, Y. W. Liu, and R. W. Li, Nanotechnology 22, 275204 (2011).
http://dx.doi.org/10.1088/0957-4484/22/27/275204
4.
4. K. M. Kim, D. S. Jeong, and C. S. Hwang, Nanotechnology 22, 254002 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254002
5.
5. A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. 77, 139 (2000).
http://dx.doi.org/10.1063/1.126902
6.
6. M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, Phys. Rev. Lett. 92, 178302 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.178302
7.
7. B. J. Choi et al., J. Appl. Phys. 98, 033715 (2005).
http://dx.doi.org/10.1063/1.2001146
8.
8. K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Nature Mater. 5, 312 (2006).
http://dx.doi.org/10.1038/nmat1614
9.
9. A. Sawa, Mater. Today 11, 28 (2008).
http://dx.doi.org/10.1016/S1369-7021(08)70119-6
10.
10. J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nat. Nanotechnol. 3, 429 (2008).
http://dx.doi.org/10.1038/nnano.2008.160
11.
11. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
12.
12. M. J. Lee et al., Nature Mater. 10, 625 (2011).
http://dx.doi.org/10.1038/nmat3070
13.
13. T. Oka and N. Nagaosa, Phys. Rev. Lett. 95, 266403 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.266403
14.
14. T. Tanaka, K. Matsunaga, Y. Ikuhara, and T. Yamamoto, Phys. Rev. B 68, 205213 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.205213
15.
15. X. B. Yan, Y. D. Xia, H. N. Xu, X. Gao, H. T. Li, R. Li, J. Yin, and Z. G. Liu, Appl. Phys. Lett. 97, 112101 (2010).
http://dx.doi.org/10.1063/1.3488810
16.
16. J. B. Lu, K. S. Yang, H. Jin, Y. Dai, and B. B. Huang, J. Solid State Chem. 184, 1148 (2011).
http://dx.doi.org/10.1016/j.jssc.2011.03.037
17.
17. K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, and R. Waser, Nanotechnology 22, 254001 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254001
18.
18. T. Menke, P. Meuffels, R. Dittmann, K. Szot, and R. Waser, J. Appl. Phys. 105, 066104 (2009).
http://dx.doi.org/10.1063/1.3100209
19.
19. D. H. Choi, D. Lee, H. Sim, M. Chang, and H. S. Hwang, Appl. Phys. Lett. 88, 082904 (2006).
http://dx.doi.org/10.1063/1.2178405
20.
20. H. Gross and S. Oh, Appl. Phys. Lett. 99, 092105 (2011).
http://dx.doi.org/10.1063/1.3633114
21.
21. W. F. Xiang, R. Dong, D. Lee, S. Oh, D. J. Seong, and H. Hwang, Appl. Phys. Lett. 90, 052110 (2007).
http://dx.doi.org/10.1063/1.2435330
22.
22. M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, Adv. Mater. 19, 2232 (2007).
http://dx.doi.org/10.1002/adma.200602915
23.
23. X. T. Zhang, Q. X. Yu, Y. P. Yao, and X. G. Li, Appl. Phys. Lett. 97, 222117 (2010).
http://dx.doi.org/10.1063/1.3524216
24.
24. S. B. Lee et al., Appl. Phys. Lett. 97, 093505 (2010).
http://dx.doi.org/10.1063/1.3486460
25.
25. K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, Phys. Rev. Lett. 88, 075508 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.075508
26.
26. D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, Rep. Prog. Phys. 75, 076502 (2012).
http://dx.doi.org/10.1088/0034-4885/75/7/076502
27.
27. A. Ruotolo, C. W. Leung, C. Y. Lam, W. F. Cheng, K. H. Wong, and G. P. Pepe, Phys. Rev. B 77, 233103 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.233103
28.
28. W. Jiang, M. Noman, Y. M. Lu, J. A. Bain, P. A. Salvador, and M. Skowronski, J. Appl. Phys. 110, 034509 (2011).
http://dx.doi.org/10.1063/1.3622623
29.
29. S. X. Wu, H. Y. Peng, and T. Wu, Appl. Phys. Lett. 98, 093503 (2011).
http://dx.doi.org/10.1063/1.3560257
30.
30. J. J. Yang, J. P. Strachan, F. Miao, M. X. Zhang, M. D. Pickett, W. Yi, D. A. A. Ohlberg, G. Medeiros-Ribeiro, and R. S. Williams, Appl. Phys. A: Mater. Sci. Process. 102, 785 (2011).
http://dx.doi.org/10.1007/s00339-011-6265-8
31.
31. J. J. Yang, J. Borghetti, D. Murphy, D. R. Stewart, and R. S. Williams, Adv. Mater. 21, 3754 (2009).
http://dx.doi.org/10.1002/adma.200900822
32.
32. A. S. Alexandrov, A. M. Bratkovsky, B. Bridle, S. E. Savel'ev, D. B. Strukov, and R. S. Williams, Appl. Phys. Lett. 99, 202104 (2011).
http://dx.doi.org/10.1063/1.3660229
33.
33. J. P. Strachan, D. B. Strukov, J. Borghetti, J. J. Yang, G. Medeiros-Ribeiro, and R. S. Williams, Nanotechnology 22, 254015 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254015
34.
34. S. Seo et al., Appl. Phys. Lett. 87, 263507 (2005).
http://dx.doi.org/10.1063/1.2150580
35.
35. W. Y. Yang and S. W. Rhee, Appl. Phys. Lett. 91, 232907 (2007).
http://dx.doi.org/10.1063/1.2822403
36.
36. H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T. Wu, Appl. Phys. Lett. 96, 192113 (2010).
http://dx.doi.org/10.1063/1.3428365
37.
37.See supplementary material at http://dx.doi.org/10.1063/1.4827597 for STEM data. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4827597
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic of the resistive switching device made of two in-plane metal electrodes separated by a distance on a reduced STO substrate. In this Pt/STO/Ti junction, the anode and cathode are Pt and Ti, respectively. Also shown are the photos of the as-received and the vacuum-reduced STO substrates. (b) curve of the reduced STO single crystal measured with a four-point configuration, showing the metal-like characteristics. (c) Semi-log plot of 30 consecutive curves measured in a Pt/STO/Ti device, demonstrating the bipolar resistive switching. (d) Linear plot of a typical RS loop. (e) Schematic energy diagram of the Pt/STO/Ti junction. (f) Retention data of the device, and the ON/OFF ratio measured at 0.2 V is ∼50.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Dependence of the RS loop on the measurement configuration. Different from the device shown in Fig. 1(a) , the anode and cathode here are Ti and Pt, respectively. (b) characteristics of the Pt/STO/Pt device, and the ohmic-like characteristics of LRS is suppressed. (c) RS loop is much suppressed in the Ti/STO/Ti device as a result of the ohmic-like Ti/STO contacts.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Dependence of the RS loop on the absolute value of the maximum negative voltage. Switching loop shrinks and NDR disappears if the absolute value of the magnitude of the maximum negative voltage is smaller than 6 V. (b) ON/OFF ratio vs. the maximum negative voltage. (c) Hysteresis of RS loop disappears if the voltage scan to the positive voltage regime is limited at 5.7 V (blue curve), which is before the onset of NDR occurs at 6 V. For comparison, a typical RS loop between −7 V and 7 V is also shown.

Image of FIG. 4.

Click to view

FIG. 4.

SEM images of devices with (a) rectangle, (b) half-circle, and (c) triangle shaped electrodes. The finite-element simulation images of the intensity of electric field for (d) rectangular, (e) circular, and (f) triangular electrodes, respectively. (g) Corresponding loops. In particular, triangle electrodes show a more pronounced switching loop compared to the circular and rectangular electrodes, and the ON/OFF ratios of the devices are shown in (h).

Image of FIG. 5.

Click to view

FIG. 5.

(a) Schematic illustration of the relationship between the ON/OFF states of the Pt/STO/Ti device with the distribution of positively charged oxygen vacancies (upper figures). The lower figures illustrate the energy diagrams corresponding to the conversion between the Ohmic like and Schottky transport. (b) Illustration of the operating mechanism and energy diagrams of the Pt/STO/Pt device. Note that Schottky barriers exist in both ON and OFF states, but the polarity of rectification switches between the states. (c) Illustration of the planar RS device with triangular electrodes where the enhanced field near the tips guides the formation of conducting vacancy-rich filaments. (d) Conceptual illustration of potential vertical capacitor-type RS device with engineered electrode with sharp tips.

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4827597
2013-11-13
2014-04-20

Abstract

We report that electrode engineering, particularly tailoring the metal work function, measurement configuration and geometric shape, has significant effects on the bipolar resistive switching (RS) in lateral memory devices based on self-doped SrTiO (STO) single crystals. Metals with different work functions (Ti and Pt) and their combinations are used to control the junction transport (either ohmic or Schottky-like). We find that the electric bias is effective in manipulating the concentration of oxygen vacancies at the metal/STO interface, influencing the RS characteristics. Furthermore, we show that the geometric shapes of electrodes (e.g., rectangular, circular, or triangular) affect the electric field distribution at the metal/oxide interface, thus plays an important role in RS. These systematic results suggest that electrode engineering should be deemed as a powerful approach toward controlling and improving the characteristics of RS memories.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4827597.html;jsessionid=2do0pjv9rv6rl.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4827597&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effects of electrode material and configuration on the characteristics of planar resistive switching devices
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4827597
10.1063/1.4827597
SEARCH_EXPAND_ITEM