1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Effects of electrode material and configuration on the characteristics of planar resistive switching devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/5/10.1063/1.4827597
1.
1. R. Waser and M. Aono, Nature Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
2.
2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature (London) 453, 80 (2008).
http://dx.doi.org/10.1038/nature06932
3.
3. F. Zhuge, S. S. Peng, C. L. He, X. J. Zhu, X. X. Chen, Y. W. Liu, and R. W. Li, Nanotechnology 22, 275204 (2011).
http://dx.doi.org/10.1088/0957-4484/22/27/275204
4.
4. K. M. Kim, D. S. Jeong, and C. S. Hwang, Nanotechnology 22, 254002 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254002
5.
5. A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Appl. Phys. Lett. 77, 139 (2000).
http://dx.doi.org/10.1063/1.126902
6.
6. M. J. Rozenberg, I. H. Inoue, and M. J. Sanchez, Phys. Rev. Lett. 92, 178302 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.178302
7.
7. B. J. Choi et al., J. Appl. Phys. 98, 033715 (2005).
http://dx.doi.org/10.1063/1.2001146
8.
8. K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Nature Mater. 5, 312 (2006).
http://dx.doi.org/10.1038/nmat1614
9.
9. A. Sawa, Mater. Today 11, 28 (2008).
http://dx.doi.org/10.1016/S1369-7021(08)70119-6
10.
10. J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nat. Nanotechnol. 3, 429 (2008).
http://dx.doi.org/10.1038/nnano.2008.160
11.
11. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
12.
12. M. J. Lee et al., Nature Mater. 10, 625 (2011).
http://dx.doi.org/10.1038/nmat3070
13.
13. T. Oka and N. Nagaosa, Phys. Rev. Lett. 95, 266403 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.266403
14.
14. T. Tanaka, K. Matsunaga, Y. Ikuhara, and T. Yamamoto, Phys. Rev. B 68, 205213 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.205213
15.
15. X. B. Yan, Y. D. Xia, H. N. Xu, X. Gao, H. T. Li, R. Li, J. Yin, and Z. G. Liu, Appl. Phys. Lett. 97, 112101 (2010).
http://dx.doi.org/10.1063/1.3488810
16.
16. J. B. Lu, K. S. Yang, H. Jin, Y. Dai, and B. B. Huang, J. Solid State Chem. 184, 1148 (2011).
http://dx.doi.org/10.1016/j.jssc.2011.03.037
17.
17. K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, and R. Waser, Nanotechnology 22, 254001 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254001
18.
18. T. Menke, P. Meuffels, R. Dittmann, K. Szot, and R. Waser, J. Appl. Phys. 105, 066104 (2009).
http://dx.doi.org/10.1063/1.3100209
19.
19. D. H. Choi, D. Lee, H. Sim, M. Chang, and H. S. Hwang, Appl. Phys. Lett. 88, 082904 (2006).
http://dx.doi.org/10.1063/1.2178405
20.
20. H. Gross and S. Oh, Appl. Phys. Lett. 99, 092105 (2011).
http://dx.doi.org/10.1063/1.3633114
21.
21. W. F. Xiang, R. Dong, D. Lee, S. Oh, D. J. Seong, and H. Hwang, Appl. Phys. Lett. 90, 052110 (2007).
http://dx.doi.org/10.1063/1.2435330
22.
22. M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, Adv. Mater. 19, 2232 (2007).
http://dx.doi.org/10.1002/adma.200602915
23.
23. X. T. Zhang, Q. X. Yu, Y. P. Yao, and X. G. Li, Appl. Phys. Lett. 97, 222117 (2010).
http://dx.doi.org/10.1063/1.3524216
24.
24. S. B. Lee et al., Appl. Phys. Lett. 97, 093505 (2010).
http://dx.doi.org/10.1063/1.3486460
25.
25. K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, Phys. Rev. Lett. 88, 075508 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.075508
26.
26. D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, Rep. Prog. Phys. 75, 076502 (2012).
http://dx.doi.org/10.1088/0034-4885/75/7/076502
27.
27. A. Ruotolo, C. W. Leung, C. Y. Lam, W. F. Cheng, K. H. Wong, and G. P. Pepe, Phys. Rev. B 77, 233103 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.233103
28.
28. W. Jiang, M. Noman, Y. M. Lu, J. A. Bain, P. A. Salvador, and M. Skowronski, J. Appl. Phys. 110, 034509 (2011).
http://dx.doi.org/10.1063/1.3622623
29.
29. S. X. Wu, H. Y. Peng, and T. Wu, Appl. Phys. Lett. 98, 093503 (2011).
http://dx.doi.org/10.1063/1.3560257
30.
30. J. J. Yang, J. P. Strachan, F. Miao, M. X. Zhang, M. D. Pickett, W. Yi, D. A. A. Ohlberg, G. Medeiros-Ribeiro, and R. S. Williams, Appl. Phys. A: Mater. Sci. Process. 102, 785 (2011).
http://dx.doi.org/10.1007/s00339-011-6265-8
31.
31. J. J. Yang, J. Borghetti, D. Murphy, D. R. Stewart, and R. S. Williams, Adv. Mater. 21, 3754 (2009).
http://dx.doi.org/10.1002/adma.200900822
32.
32. A. S. Alexandrov, A. M. Bratkovsky, B. Bridle, S. E. Savel'ev, D. B. Strukov, and R. S. Williams, Appl. Phys. Lett. 99, 202104 (2011).
http://dx.doi.org/10.1063/1.3660229
33.
33. J. P. Strachan, D. B. Strukov, J. Borghetti, J. J. Yang, G. Medeiros-Ribeiro, and R. S. Williams, Nanotechnology 22, 254015 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254015
34.
34. S. Seo et al., Appl. Phys. Lett. 87, 263507 (2005).
http://dx.doi.org/10.1063/1.2150580
35.
35. W. Y. Yang and S. W. Rhee, Appl. Phys. Lett. 91, 232907 (2007).
http://dx.doi.org/10.1063/1.2822403
36.
36. H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T. Wu, Appl. Phys. Lett. 96, 192113 (2010).
http://dx.doi.org/10.1063/1.3428365
37.
37.See supplementary material at http://dx.doi.org/10.1063/1.4827597 for STEM data. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4827597
Loading
/content/aip/journal/aplmater/1/5/10.1063/1.4827597
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4827597
2013-11-13
2014-11-28

Abstract

We report that electrode engineering, particularly tailoring the metal work function, measurement configuration and geometric shape, has significant effects on the bipolar resistive switching (RS) in lateral memory devices based on self-doped SrTiO (STO) single crystals. Metals with different work functions (Ti and Pt) and their combinations are used to control the junction transport (either ohmic or Schottky-like). We find that the electric bias is effective in manipulating the concentration of oxygen vacancies at the metal/STO interface, influencing the RS characteristics. Furthermore, we show that the geometric shapes of electrodes (e.g., rectangular, circular, or triangular) affect the electric field distribution at the metal/oxide interface, thus plays an important role in RS. These systematic results suggest that electrode engineering should be deemed as a powerful approach toward controlling and improving the characteristics of RS memories.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4827597.html;jsessionid=178q4ab3bahod.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4827597&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effects of electrode material and configuration on the characteristics of planar resistive switching devices
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4827597
10.1063/1.4827597
SEARCH_EXPAND_ITEM