1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Optimum high temperature strength of two-dimensional nanocomposites
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/5/10.1063/1.4828757
1.
1. H. Gleiter, Acta Mater. 56, 5875 (2008).
http://dx.doi.org/10.1016/j.actamat.2008.08.028
2.
2. T. Chookajorn, H. A. Murdoch, and C. A. Schuh, Science 337, 951 (2012).
http://dx.doi.org/10.1126/science.1224737
3.
3. J. S. Carpenter, S. C. Vogel, J. LeDonne, D. L. Hammon, I. J. Beyerlein, and N. A. Mara, Acta Mater. 60, 1576 (2012).
http://dx.doi.org/10.1016/j.actamat.2011.11.045
4.
4. A. Misra, J. P. Hirth, and R. G. Hoagland, Acta Mater. 53, 4817 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.06.025
5.
5. I. J. Beyerlein, N. A. Mara, J. S. Carpenter, T. R. Nizolek, K. Kang, S. Zheng, J. Wang, T. M. Pollock, J. Mater. Res. 28, 1799 (2013).
http://dx.doi.org/10.1557/jmr.2013.21
6.
6. J. S. Carpenter, S. J. Zheng, R. F. Zhang, S. C. Vogel, I. J. Beyerlein, and N. A. Mara, Philos. Mag. 93, 718 (2013).
http://dx.doi.org/10.1080/14786435.2012.731527
7.
7. S. J. Zheng, I. J. Beyerlein, J. S. Carpenter, K. Kang, J. Wang, W. Z. Han, and N. A. Mara, Nature Commun. 4, 1696 (2013).
http://dx.doi.org/10.1038/ncomms2651
8.
8. T. Hochbauer, A. Misra, K. Hattar, and R. G. Hoagland, J. Appl. Phys. 98, 123516 (2005).
http://dx.doi.org/10.1063/1.2149168
9.
9. K. Hattar, M. J. Demkowicz, A. Misra, I. M. Robertson, and R. G. Hoagland, Scr. Mater. 58, 541 (2008).
http://dx.doi.org/10.1016/j.scriptamat.2007.11.007
10.
10. A. Misra, R. G. Hoagland, H. Kung, Philos. Mag. 84, 1021 (2004).
http://dx.doi.org/10.1080/14786430310001659480
11.
11. N. A. Mara, A. V. Sergueeva, T. Tamayo, X. Zhang, A. Misra, and A. K. Mukherjee, Mater. Sci. Eng., A 493, 274 (2008);
http://dx.doi.org/10.1016/j.msea.2007.08.089
11.N. A. Mara, A. V. Sergueeva, T. Tamayo, X. Zhang, A. Misra, and A. K. Mukherjee, Thin Solid Films 515, 3241 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.01.036
12.
12. J. F. Smith and S. Zheng, Surf. Eng. 16, 143 (2000).
http://dx.doi.org/10.1179/026708400101517044
13.
13. A. Sawant and S. Tin, Scr. Mater. 58, 275 (2008).
http://dx.doi.org/10.1016/j.scriptamat.2007.10.013
14.
14. J. C. Trenkle, C. E. Packard, and C. A. Schuh, Rev. Sci. Instrum. 81, 073901 (2010).
http://dx.doi.org/10.1063/1.3436633
15.
15. N. M. Everitt, M. I. Davies, and J. F. Smith, Philos. Mag. 91, 1221 (2011).
http://dx.doi.org/10.1080/14786435.2010.496745
16.
16. J. M. Wheeler, R. Raghavan, and J. Michler, Mater. Sci. Eng., A 528, 8750 (2011).
http://dx.doi.org/10.1016/j.msea.2011.08.057
17.
17. S. Lotfian, J. M. Molina-Aldareguia, K. E. Yazzie, J. Llorca, and N. Chawla, Philos. Mag. Lett. 92, 362 (2012);
http://dx.doi.org/10.1080/09500839.2012.674220
17.S. Lotfian, J. M. Molina-Aldareguia, K. E. Yazzie, J. Llorca, and N. Chawla, J. Electron. Mater. 42, 1085 (2013).
http://dx.doi.org/10.1007/s11664-013-2517-z
18.
18. S. Lotfian, M. Rodríguez, K. E. Yazzie, N. Chawla, J. Llorca, J. M. Molina-Aldareguía, Acta Mater. 61, 4439 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.04.013
19.
19. R. F. Zhang, T. C. Germann, X. Y. Liu, J. Wang, and I. J. Beyerlein, Scr. Mater. 68, 114 (2013).
http://dx.doi.org/10.1016/j.scriptamat.2012.09.022
20.
20. I. J. Beyerlein, J. Wang, and R. F. Zhang, Acta Mater. 61, 7488 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.08.061
21.
21. I. J. Beyerlein, J. Wang, K. Kang, S. J. Zheng, and N. A. Mara, Mater. Res. Lett. 1, 89 (2013).
http://dx.doi.org/10.1080/21663831.2013.782074
22.
22. I. J. Beyerlein, J. Wang, and R. F. Zhang, APL Mat. 1, 032112 (2013).
http://dx.doi.org/10.1063/1.4820424
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4828757 for details on materials fabrication; details on high temperature nano-indentation; data supporting Figs. 1 and 2; and crystal plasticity model description. [Supplementary Material]
24.
24. J. S. Carpenter, R. J. McCabe, I. J. Beyerlein, T. A. Wynn, and N. A. Mara, J. Appl. Phys. 113, 094304 (2013).
http://dx.doi.org/10.1063/1.4794388
25.
25. S.-B. Lee, J. E. LeDonne, S. C. V. Lim, I. J. Beyerlein, and A. D. Rollett, Acta Mater. 60, 1747 (2012).
http://dx.doi.org/10.1016/j.actamat.2011.12.007
26.
26. J. Schiotz and K. W. Jacobsen, Science 301, 1357 (2003).
http://dx.doi.org/10.1126/science.1086636
27.
27. L. Lu, X. Chen, X. Huang, and K. Lu, Science 323, 607610 (2009).
http://dx.doi.org/10.1126/science.1167641
28.
28. S. L. Lehoczky, Phys. Rev. Lett. 41, 1814 (1978).
http://dx.doi.org/10.1103/PhysRevLett.41.1814
29.
29. J. D. Embury and J. P. Hirth, Acta Metall. Mater. 42, 2051 (1994).
http://dx.doi.org/10.1016/0956-7151(94)90030-2
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4828757
Loading
/content/aip/journal/aplmater/1/5/10.1063/1.4828757
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4828757
2013-11-07
2014-09-19

Abstract

High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4828757.html;jsessionid=fpkmkfbx39t5.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4828757&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optimum high temperature strength of two-dimensional nanocomposites
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4828757
10.1063/1.4828757
SEARCH_EXPAND_ITEM