1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Optimum high temperature strength of two-dimensional nanocomposites
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/5/10.1063/1.4828757
1.
1. H. Gleiter, Acta Mater. 56, 5875 (2008).
http://dx.doi.org/10.1016/j.actamat.2008.08.028
2.
2. T. Chookajorn, H. A. Murdoch, and C. A. Schuh, Science 337, 951 (2012).
http://dx.doi.org/10.1126/science.1224737
3.
3. J. S. Carpenter, S. C. Vogel, J. LeDonne, D. L. Hammon, I. J. Beyerlein, and N. A. Mara, Acta Mater. 60, 1576 (2012).
http://dx.doi.org/10.1016/j.actamat.2011.11.045
4.
4. A. Misra, J. P. Hirth, and R. G. Hoagland, Acta Mater. 53, 4817 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.06.025
5.
5. I. J. Beyerlein, N. A. Mara, J. S. Carpenter, T. R. Nizolek, K. Kang, S. Zheng, J. Wang, T. M. Pollock, J. Mater. Res. 28, 1799 (2013).
http://dx.doi.org/10.1557/jmr.2013.21
6.
6. J. S. Carpenter, S. J. Zheng, R. F. Zhang, S. C. Vogel, I. J. Beyerlein, and N. A. Mara, Philos. Mag. 93, 718 (2013).
http://dx.doi.org/10.1080/14786435.2012.731527
7.
7. S. J. Zheng, I. J. Beyerlein, J. S. Carpenter, K. Kang, J. Wang, W. Z. Han, and N. A. Mara, Nature Commun. 4, 1696 (2013).
http://dx.doi.org/10.1038/ncomms2651
8.
8. T. Hochbauer, A. Misra, K. Hattar, and R. G. Hoagland, J. Appl. Phys. 98, 123516 (2005).
http://dx.doi.org/10.1063/1.2149168
9.
9. K. Hattar, M. J. Demkowicz, A. Misra, I. M. Robertson, and R. G. Hoagland, Scr. Mater. 58, 541 (2008).
http://dx.doi.org/10.1016/j.scriptamat.2007.11.007
10.
10. A. Misra, R. G. Hoagland, H. Kung, Philos. Mag. 84, 1021 (2004).
http://dx.doi.org/10.1080/14786430310001659480
11.
11. N. A. Mara, A. V. Sergueeva, T. Tamayo, X. Zhang, A. Misra, and A. K. Mukherjee, Mater. Sci. Eng., A 493, 274 (2008);
http://dx.doi.org/10.1016/j.msea.2007.08.089
11.N. A. Mara, A. V. Sergueeva, T. Tamayo, X. Zhang, A. Misra, and A. K. Mukherjee, Thin Solid Films 515, 3241 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.01.036
12.
12. J. F. Smith and S. Zheng, Surf. Eng. 16, 143 (2000).
http://dx.doi.org/10.1179/026708400101517044
13.
13. A. Sawant and S. Tin, Scr. Mater. 58, 275 (2008).
http://dx.doi.org/10.1016/j.scriptamat.2007.10.013
14.
14. J. C. Trenkle, C. E. Packard, and C. A. Schuh, Rev. Sci. Instrum. 81, 073901 (2010).
http://dx.doi.org/10.1063/1.3436633
15.
15. N. M. Everitt, M. I. Davies, and J. F. Smith, Philos. Mag. 91, 1221 (2011).
http://dx.doi.org/10.1080/14786435.2010.496745
16.
16. J. M. Wheeler, R. Raghavan, and J. Michler, Mater. Sci. Eng., A 528, 8750 (2011).
http://dx.doi.org/10.1016/j.msea.2011.08.057
17.
17. S. Lotfian, J. M. Molina-Aldareguia, K. E. Yazzie, J. Llorca, and N. Chawla, Philos. Mag. Lett. 92, 362 (2012);
http://dx.doi.org/10.1080/09500839.2012.674220
17.S. Lotfian, J. M. Molina-Aldareguia, K. E. Yazzie, J. Llorca, and N. Chawla, J. Electron. Mater. 42, 1085 (2013).
http://dx.doi.org/10.1007/s11664-013-2517-z
18.
18. S. Lotfian, M. Rodríguez, K. E. Yazzie, N. Chawla, J. Llorca, J. M. Molina-Aldareguía, Acta Mater. 61, 4439 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.04.013
19.
19. R. F. Zhang, T. C. Germann, X. Y. Liu, J. Wang, and I. J. Beyerlein, Scr. Mater. 68, 114 (2013).
http://dx.doi.org/10.1016/j.scriptamat.2012.09.022
20.
20. I. J. Beyerlein, J. Wang, and R. F. Zhang, Acta Mater. 61, 7488 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.08.061
21.
21. I. J. Beyerlein, J. Wang, K. Kang, S. J. Zheng, and N. A. Mara, Mater. Res. Lett. 1, 89 (2013).
http://dx.doi.org/10.1080/21663831.2013.782074
22.
22. I. J. Beyerlein, J. Wang, and R. F. Zhang, APL Mat. 1, 032112 (2013).
http://dx.doi.org/10.1063/1.4820424
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4828757 for details on materials fabrication; details on high temperature nano-indentation; data supporting Figs. 1 and 2; and crystal plasticity model description. [Supplementary Material]
24.
24. J. S. Carpenter, R. J. McCabe, I. J. Beyerlein, T. A. Wynn, and N. A. Mara, J. Appl. Phys. 113, 094304 (2013).
http://dx.doi.org/10.1063/1.4794388
25.
25. S.-B. Lee, J. E. LeDonne, S. C. V. Lim, I. J. Beyerlein, and A. D. Rollett, Acta Mater. 60, 1747 (2012).
http://dx.doi.org/10.1016/j.actamat.2011.12.007
26.
26. J. Schiotz and K. W. Jacobsen, Science 301, 1357 (2003).
http://dx.doi.org/10.1126/science.1086636
27.
27. L. Lu, X. Chen, X. Huang, and K. Lu, Science 323, 607610 (2009).
http://dx.doi.org/10.1126/science.1167641
28.
28. S. L. Lehoczky, Phys. Rev. Lett. 41, 1814 (1978).
http://dx.doi.org/10.1103/PhysRevLett.41.1814
29.
29. J. D. Embury and J. P. Hirth, Acta Metall. Mater. 42, 2051 (1994).
http://dx.doi.org/10.1016/0956-7151(94)90030-2
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4828757
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Indentation hardness vs. layer thickness for the (a) ARB Cu–Nb NMM at 23 °C, 300 °C, and 400 °C; (b) PVD Cu–Nb NMMs at 23 °C, 200 °C, and 300 °C.

Image of FIG. 2.

Click to view

FIG. 2.

The 300 °C hardness normalized by the room temperature hardness for each layer thickness as a function of / , where ∼ 18 nm for ARB and ∼ 5 nm for PVD.

Image of FIG. 3.

Click to view

FIG. 3.

TEM cross-sectional images of the indents in the PVD Cu–Nb NMM with = 30 nm tested at: [(a) and (b)] RT and [(c) and (d)] T = 300 °C. Panels (e) and (f) correspond to the ARB Cu–Nb NMM with = 18 nm tested at 300 °C. Average layer thicknesses at increasing distances from the indentation tip are included.

Image of FIG. 4.

Click to view

FIG. 4.

Predicted and measured reduction in hardness (normalized by the room temperature hardness) with temperature for each for (a) PVD Cu/Nb NMMs and (b) ARB Cu/Nb NMMs.

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4828757
2013-11-07
2014-04-20

Abstract

High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4828757.html;jsessionid=ggbigp7fxo5m.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4828757&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optimum high temperature strength of two-dimensional nanocomposites
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4828757
10.1063/1.4828757
SEARCH_EXPAND_ITEM