1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Interfacial free energies determined from binary embedded alloy nanocluster geometry
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/5/10.1063/1.4828937
1.
1. P. Z. Pawlow, Z. Phys. Chem. 65, 545 (1909).
2.
2. Q. Xu, I. D. Sharp, C. W. Yuan, D. O. Yi, C. Y. Liao, A. M. Glaeser, A. M. Minor, J. W. Beeman, M. C. Ridgway, P. Kluth, J. W. Ager III, D. C. Chrzan, and E. E. Haller, Phys. Rev. Lett. 97, 155701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.155701
3.
3. J. Li, Z. Yuan, Z. Qiao, J. Fan, Y. Xu, and J. Ke, J. Colloid Interface Sci. 297, 261 (2006).
http://dx.doi.org/10.1016/j.jcis.2005.10.049
4.
4. P. Kluth, B. Hoy, B. Johannessen, S. G. Dunn, G. J. Foran, and M. C. Ridgway, Appl. Phys. Lett. 89, 153118 (2006).
http://dx.doi.org/10.1063/1.2360891
5.
5. A. Meldrum, R. F. Haglund, L. A. Boatner, and C. W. White, Adv. Mater. 13, 1431 (2001).
http://dx.doi.org/10.1002/1521-4095(200110)13:19<1431::AID-ADMA1431>3.0.CO;2-Z
6.
6. S. J. Shin, J. Guzman, C. W. Yuan, C. Y. Liao, C. N. Boswell-Koller, P. R. Stone, O. D. Dubon, A. M. Minor, M. Watanabe, J. W. Beeman, K. M. Yu, J. W. Ager III, D. C. Chrzan, and E. E. Haller, Nano Lett. 10, 2794 (2010).
http://dx.doi.org/10.1021/nl100670r
7.
7. Y.-L. Chueh, C. N. Boswell, C.-W. Yuan, S. J. Shin, K. Takei, J. C. Ho, H. Ko, Z. Fan, E. E. Haller, D. C. Chrzan, and A. Javey, Nano Lett. 10, 393 (2010).
http://dx.doi.org/10.1021/nl902597m
8.
8. Y. M. Niquet, G. Allan, C. Delerue, and M. Lannoo, Appl. Phys. Lett. 77, 1182 (2000).
http://dx.doi.org/10.1063/1.1289659
9.
9. N. H. Y. Wang, J. Phys. Chem. 95, 525 (1991).
http://dx.doi.org/10.1021/j100155a009
10.
10. D. Turnbull, J. Appl. Phys. 21, 1022 (1950).
http://dx.doi.org/10.1063/1.1699435
11.
11. A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, Science 256, 1425 (1992).
http://dx.doi.org/10.1126/science.256.5062.1425
12.
12. C. W. Yuan, S. J. Shin, C. Y. Liao, J. Guzman, P. R. Stone, M. Watanabe, J. W. Ager III, E. E. Haller, and D. C. Chrzan, Appl. Phys. Lett. 93, 193114 (2008).
http://dx.doi.org/10.1063/1.3027066
13.
13. J. Guzman, C. N. Boswell-Koller, J. W. Beeman, K. C. Bustillo, T. Conry, O. D. Dubón, W. L. Hansen, A. X. Levander, C. Y. Liao, R. R. Lieten, C. A. Sawyer, M. P. Sherburne, S. J. Shin, P. R. Stone, M. Watanabe, K. M. Yu, J. W. Ager III, D. C. Chrzan, and E. E. Haller, Appl. Phys. Lett. 98, 193101 (2011).
http://dx.doi.org/10.1063/1.3584850
14.
14. Y. V. Naidich and V. M. Perevertailo, Poroshk. Metall. 2, 74 (1971).
15.
15. Y. V. Naidich and V. M. Perevertailo, Poroshk. Metall. 7, 63 (1975).
16.
16. I. D. Sharp, D. O. Yi, Q. Xu, C. Y. Liao, J. W. Beeman, Z. Liliental-Weber, K. M. Yu, D. N. Zakharov, J. W. Ager III, D. C. Chrzan, and E. E. Haller, Appl. Phys. Lett. 86, 063107 (2005).
http://dx.doi.org/10.1063/1.1856132
17.
17. D. A. McGraw, J. Am. Chem. Soc. 35, 22 (1952).
18.
18. Y. L. Belousov, V. A. Firsov, and A. I. Shutov, Steklo Keram. 2, 12 (1992).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4828937
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

HAADF-STEM images of the as-formed (a) GeSn (cross-sectional view) and (b) AuGe (plan view) alloy BEANs. The dashed lines in (a) indicate the upper and lower limit of the considered GeSn BEAN band.

Image of FIG. 2.

Click to view

FIG. 2.

(Top) Cross-sectional view of a bi-lobe crystal with parameters {f, γ, γ} = {0.5, 1.0, 1.5} showing the important geometrical features, d, d, and d. (Bottom) False-colored energy filtered transmission electron microscopy image of GeSn bilobed nanocluster (Ge is red, and Sn is green). From Ref. 6 .

Image of FIG. 3.

Click to view

FIG. 3.

as a function of temperature calculated with respect to the GeSn (black) and AuGe (gray) systems. Notice that when we consider an error in composition of 1 at. %, both the GeSn and AuGe BEAN systems predict similar Ge(s)/SiO interface energies at temperatures above ∼560°C. Further analysis is therefore necessary to pinpoint the correct set temperature.

Image of FIG. 4.

Click to view

FIG. 4.

Contour plots for η (gray scale contours) and η (dashed contour lines) are shown. Measured contours are emphasized in thick solid and dashed lines (a) GeSn BEANs with = 0.32, η = 0.88, η = 0.67 determining γ = 2.05 and γ = 2.42; (b) AuGe BEANs ( = 33%, η = 0.94, η = 0.71). The intersection lies at {γ, γ} = {3.71, 4.26}. Insets in both (a) and (b) represent the simulated BEANs.

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4828937
2013-11-12
2014-04-18

Abstract

The equilibrium geometries of embedded binary eutectic alloy nanostructures are used to determine the interfacial free energies between two phases of a strongly segregating alloy and the matrix. The solid Ge-SiO interfacial free energy at 600°C is determined to be 0.82–0.99 J/m2, in good agreement with estimates obtained from stress relaxation experiments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4828937.html;jsessionid=2doqwqnt2v52s.x-aip-live-01?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4828937&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interfacial free energies determined from binary embedded alloy nanocluster geometry
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4828937
10.1063/1.4828937
SEARCH_EXPAND_ITEM