1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Poly (N-isopropylacrylamide) microgel-based etalons and etalon arrays for determining the molecular weight of polymers in solution
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/5/10.1063/1.4829975
1.
1. J. R. Capadona, K. Shanmuganathan, D. J. Tyler, S. J. Rowan, and C. Weder, Science 319, 13701374 (2008).
http://dx.doi.org/10.1126/science.1153307
2.
2. H. Lee, B. P. Lee, and P. B. Messersmith, Nature (London) 448, 338342 (2007).
http://dx.doi.org/10.1038/nature05968
3.
3. C. M. Haller, W. Buerzle, C. E. Brubaker, P. B. Messersmith, E. Mazza, O.-N. Koelble, R. Zimmermann, and M. Ehrbar, Prenat Diagn. 31, 654660 (2011).
http://dx.doi.org/10.1002/pd.2712
4.
4. H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, Science 318, 426430 (2007).
http://dx.doi.org/10.1126/science.1147241
5.
5. A. Suzuki and T. Tanaka, Nature (London) 346, 345347 (1990).
http://dx.doi.org/10.1038/346345a0
6.
6. A. Gutowska, Y. H. Bae, H. A. Jacobs, J. Feijen, and S. W. Kim, Macromolecules 27, 41674175 (1994).
http://dx.doi.org/10.1021/ma00093a018
7.
7. R. Pelton, Adv. Colloid Interface Sci. 85, 133 (2000).
http://dx.doi.org/10.1016/S0001-8686(99)00023-8
8.
8. A. L. Black, J. M. Lenhardt, and S. L. Craig, J. Mater. Chem. 21, 16551663 (2011).
http://dx.doi.org/10.1039/c0jm02636k
9.
9. A. Dedinaite, E. Thormann, G. Olanya, P. M. Claesson, B. Nystrom, A. L. Kjoniksen, and K. Z. Zhu, Soft Matter 6, 24892498 (2010).
http://dx.doi.org/10.1039/c003320k
10.
10. T. Alizadeh, M. R. Ganjali, and M. Zare, Anal. Chim. Acta 689, 5259 (2011).
http://dx.doi.org/10.1016/j.aca.2011.01.036
11.
11. H. Ouyang, Z. H. Xia, and J. A. Zhe, Microfluid. Nanofluid. 9, 915922 (2010).
http://dx.doi.org/10.1007/s10404-010-0614-3
12.
12. E. Ayano, M. Karaki, T. Ishihara, H. Kanazawa, and T. Okano, Colloids Surf., B 99, 6773 (2012).
http://dx.doi.org/10.1016/j.colsurfb.2011.10.003
13.
13. M. A. Nash, J. N. Waitumbi, A. S. Hoffman, P. Yager, and P. S. Stayton, ACS Nano 6, 67766785 (2012).
http://dx.doi.org/10.1021/nn3015008
14.
14. N. Morimoto, X. P. Qiu, F. M. Winnik, and K. Akiyoshi, Macromolecules 41, 59855987 (2008).
http://dx.doi.org/10.1021/ma801332x
15.
15. V. V. Yashin, O. Kuksenok, and A. C. Balazs, Prog. Polym. Sci. 35, 155173 (2010).
http://dx.doi.org/10.1016/j.progpolymsci.2009.10.003
16.
16. E. S. M. Lee, B. Shuter, J. Chan, M. S. K. Chong, J. Ding, S. H. Teoh, O. Beuf, A. Briguet, K. C. Tam, M. Choolani, and S. C. Wang, Biomaterials 31, 32963306 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2010.01.037
17.
17. W. Fischer, M. A. Quadir, A. Barnard, D. K. Smith, and R. Hagg, Macromol. Biosci. 11, 17361746 (2011).
http://dx.doi.org/10.1002/mabi.201100248
18.
18. J. D. Debord and L. A. Lyon, Langmuir 19, 76627664 (2003).
http://dx.doi.org/10.1021/la0342924
19.
19. T. Hoare and R. Pelton, Macromolecules 40, 670678 (2007).
http://dx.doi.org/10.1021/ma062254w
20.
20. J. Kleinen and W. Richtering, J. Phys. Chem. B 115, 38043810 (2011).
http://dx.doi.org/10.1021/jp2014594
21.
21. H. Kawaguchi, K. Fujimoto, and Y. Mizuhara, Colloid Polym. Sci. 270, 5357 (1992).
http://dx.doi.org/10.1007/BF00656929
22.
22. C. Wu and S. Zhou, Macromolecules 28, 83818387 (1995).
http://dx.doi.org/10.1021/ma00128a056
23.
23. M. J. Serpe and L. A. Lyon, Chem. Mater. 16, 43734380 (2004).
http://dx.doi.org/10.1021/cm048844v
24.
24. G. Zhang and C. Wu, J. Am. Chem. Soc. 123, 13761380 (2001).
http://dx.doi.org/10.1021/ja003889s
25.
25. M. J. Serpe, C. D. Jones, and L. A. Lyon, Langmuir 19, 87598764 (2003).
http://dx.doi.org/10.1021/la034391h
26.
26. D. J. Gan and L. A. Lyon, Macromolecules 35, 96349639 (2002).
http://dx.doi.org/10.1021/ma021186k
27.
27. Z. Y. Meng, J. K. Cho, S. Debord, V. Breedveld, and L. A. Lyon, J. Phys. Chem. B 111, 69926997 (2007).
http://dx.doi.org/10.1021/jp073122n
28.
28. K. Kratz, T. Hellweg, and W. Eimer, Colloids Surf., A 170, 137149 (2000).
http://dx.doi.org/10.1016/S0927-7757(00)00490-8
29.
29. S. Zhou and B. Chu, J. Phys. Chem. B 102, 13641371 (1998).
http://dx.doi.org/10.1021/jp972990p
30.
30. A. Burmistrova and R. von Klitzing, J. Mater. Chem. 20, 35023507 (2010).
http://dx.doi.org/10.1039/b923969c
31.
31. C. D. Jones and L. A. Lyon, Macromolecules 33, 83018306 (2000).
http://dx.doi.org/10.1021/ma001398m
32.
32. G. E. Morris, B. Vincent, and M. J. Snowden, J. Colloid Interface Sci. 190, 198205 (1997).
http://dx.doi.org/10.1006/jcis.1997.4843
33.
33. M. Karg and T. Hellweg, Curr. Opin. Colloid Interface Sci. 14, 438450 (2009).
http://dx.doi.org/10.1016/j.cocis.2009.08.002
34.
34. S. Nayak, H. Lee, J. Chmielewski, and L. A. Lyon, J. Am. Chem. Soc. 126, 1025810259 (2004).
http://dx.doi.org/10.1021/ja0474143
35.
35. S. Schmidt, T. Hellweg, and R. von Klitzing, Langmuir 24, 1259512602 (2008).
http://dx.doi.org/10.1021/la801770n
36.
36. J. Kleinen and W. Richtering, Colloid Polym. Sci. 289, 739749 (2011).
http://dx.doi.org/10.1007/s00396-011-2401-4
37.
37. E. A. Karpushkin, S. B. Zezin, and A. B. Zezin, Polym. Sci., Ser. A Ser. B 51, 3337 (2009).
http://dx.doi.org/10.1134/S1560090409010059
38.
38. A. B. Zezin, V. B. Rogacheva, and V. A. Kabanov, Macromol. Symp. 126, 123141 (1998).
http://dx.doi.org/10.1002/masy.19981260111
39.
39. V. A. Kabanov, A. B. Zezin, V. B. Rogacheva, T. V. Panova, E. V. Bykova, J. G. H. Joosten, and J. Brackman, Faraday Discuss. 128, 341354 (2005).
http://dx.doi.org/10.1039/b404410j
40.
40. A. R. Khokhlov, E. Y. Kramarenko, E. E. Makhaeva, and S. G. Starodubtzev, Macromolecules 25, 47794703 (1992).
http://dx.doi.org/10.1021/ma00044a045
41.
41. V. A. Kabanov, V. B. Skobeleva, V. B. Rogacheva, and A. B. Zezin, J. Phys. Chem. B 108, 14851490 (2004).
http://dx.doi.org/10.1021/jp035821f
42.
42. D. A. Davydov, E. G. Yaroslavova, A. A. Efimova, and A. A. Yaroslavov, Colloid J. 71, 5562 (2009).
http://dx.doi.org/10.1134/S1061933X09010062
43.
43. C. D. Sorrell, M. C. D. Carter, and M. J. Serpe, ACS Appl. Mater. Interfaces 3, 11401147 (2011).
http://dx.doi.org/10.1021/am1012722
44.
44. C. D. Sorrell, M. C. D. Carter, and M. J. Serpe, Adv. Funct. Mater. 21, 425433 (2011).
http://dx.doi.org/10.1002/adfm.201001714
45.
45. C. D. Sorrell and M. J. Serpe, Adv. Mater. 23, 40884092 (2011).
http://dx.doi.org/10.1002/adma.201101717
46.
46. M. C. D. Carter, C. D. Sorrell, and M. J. Serpe, J. Phys. Chem. B 115, 1435914368 (2011).
http://dx.doi.org/10.1021/jp207138f
47.
47. G. Brooker, Modern Classical Optics (Oxford University Press, Oxford, U.K., 2003).
48.
48. J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Taylor and Francis Group, New York, 1989), p 583.
49.
49. M. R. Islam and M. J. Serpe, Macromolecules 46, 15991607 (2013).
http://dx.doi.org/10.1021/ma302637n
50.
50. M. R. Islam and M. J. Serpe, Chem Commun. 49, 26462648 (2013).
http://dx.doi.org/10.1039/c3cc00211j
51.
51.See supplementary material at http://dx.doi.org/10.1063/1.4829975 for experimental details including microgel synthesis, etalon array fabrication, and MW selectivity and sensing experiment. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4829975
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The basic structure of a microgel-based etalon. The Au overlayer in the figure is drawn as a planar layer, but is actually conformal to the microgel layer. Each Au layer was supported by 2 nm Cr as an adhesion layer. (b) Characteristic reflectance spectra from a pNIPAm-co-AAc microgel-based etalon.

Image of FIG. 2.

Click to view

FIG. 2.

(a) PNIPAm-co-AAc microgel-based etalon with different Au overlayer thicknesses in different parts of etalon. The device is 1 in. × 1 in. in dimension. (b) Shift of λ for same pNIPAm-co-AAc etalon with different overlayer thickness in pH 6.5 after addition of pDADMAC solution of different MW. The shifts shown in figure are cumulative shift. Each data point represents the average of at least three independent measurements, and the error bars are standard deviation for those values.

Image of FIG. 3.

Click to view

FIG. 3.

(a) PNIPAm-co-AAc and pNIPAm-co-APMAH microgel-based etalon with same Au overlayer thickness. (b) Cumulative shift of λ for same etalon with same overlayer thickness and different microgel in pH 6.5 after addition of pDADMAC (▲) and PSS (■ (blue)) solution. Each data point represents the average of at least three independent measurements, and the error bars are standard deviation for those values.

Image of FIG. 4.

Click to view

FIG. 4.

(a) PNIPAm-co-AAc and pNIPAm-co-APMAH microgel-based etalon with different Au overlayer thicknesses. (b) Cumulative shift of λ for same etalon with different overlayer thickness and different microgels in pH 6.5 after addition of pDADMAC solution of different MW and PSS solution. Each data point represents the average of at least three independent measurements, and the error bars are standard deviation for those values.

Image of FIG. 5.

Click to view

FIG. 5.

The shift of λ for pNIPAm-co-AAc microgel etalon arrays with different thicknesses for regeneration. Here (▲) represents the peak shift of a new etalon arrays, (♦) represents the peak shift after 1st regeneration, and (●) represents the peak shift after 2nd regeneration.

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4829975
2013-11-15
2014-04-20

Abstract

Positively and/or negatively charged poly (-isopropylacrylamide)-based microgels were deposited on a single substrate and isolated regions of Au overlayers were deposited on top of the microgels. Each spatially isolated Au overlayer region had a different thickness to make an etalon array. We found that areas with a thin Au overlayer (5 nm) responded to a range of polymer molecular weights (MW), while areas with a thick overlayer (35 nm) can only respond to low molecular weight polyelectrolytes. By comparing the optical responses of the device's individual array elements, a good approximation of the polyelectrolyte MW in solution can be made.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4829975.html;jsessionid=39rpbwln3qaup.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4829975&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Poly (N-isopropylacrylamide) microgel-based etalons and etalon arrays for determining the molecular weight of polymers in solution
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4829975
10.1063/1.4829975
SEARCH_EXPAND_ITEM