1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Onset of vertical threading dislocations in Si1−x Ge x /Si (001) at a critical Ge concentration
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/5/10.1063/1.4829976
1.
1. M. Bonfanti, E. Grilli, M. Guzzi, M. Virgilio, G. Grosso, D. Chrastina, G. Isella, H. von Känel, and A. Neels, Phys. Rev. B 78, 041407 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.041407
2.
2. P. Chaisakul, D. Marris-Morini, M. S. Rouifed, G. Isella, D. Chrastina, J. Frigerio, X. Le Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, Opt. Express 20, 3219 (2012).
http://dx.doi.org/10.1364/OE.20.003219
3.
3. M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005).
http://dx.doi.org/10.1063/1.1819976
4.
4. J. W. Matthews, S. Mader, and T. B. Light, J. Appl. Phys. 41, 3800 (1970).
http://dx.doi.org/10.1063/1.1659510
5.
5. L. M. Giovane, H. C. Luan, A. M. Agarwal, and L. C. Kimerling, Appl. Phys. Lett. 78, 541 (2001).
http://dx.doi.org/10.1063/1.1341230
6.
6. A. D. Kurtz, S. A. Kulin, and B. L. Averbach, Phys. Rev. 101, 1285 (1956).
http://dx.doi.org/10.1103/PhysRev.101.1285
7.
7. G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menéndez, Phys. Rev. B 84, 205307 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.205307
8.
8. D. J. Paul, Semicond. Sci. Technol. 19, R75 (2004).
http://dx.doi.org/10.1088/0268-1242/19/10/R02
9.
9. M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, Appl. Phys. Lett. 53, 2293 (1988).
http://dx.doi.org/10.1063/1.100257
10.
10. Y. Yamamoto, G. Kozlowski, P. Zaumseil, and B. Tillack, Thin Solid Films 520, 3216 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.10.095
11.
11. E. Ayers, J. Electron. Mater. 37, 1511 (2008).
http://dx.doi.org/10.1007/s11664-008-0504-6
12.
12. E. A. Fitzgerald, J. Vac. Sci. Technol. B 7, 782 (1989).
http://dx.doi.org/10.1116/1.584600
13.
13. T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, Appl. Phys. Lett. 76, 3700 (2000).
http://dx.doi.org/10.1063/1.126754
14.
14. E. P. Kvam, D. M. Maher, and C. J. Humphreys, J. Mater. Res. 5, 1900 (1990).
http://dx.doi.org/10.1557/JMR.1990.1900
15.
15. R. People and J. C. Bean, Appl. Phys. Lett. 47, 322 (1985).
http://dx.doi.org/10.1063/1.96206
16.
16. J. S. Speck, M. A. Brewer, G. Beltz, A. E. Romanov, and W. Pompe, J. Appl. Phys. 80, 3808 (1996).
http://dx.doi.org/10.1063/1.363334
17.
17. E. A. Fitzgerald, G. P. Watson, R. E. Proano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Appl. Phys. 65, 2220 (1989).
http://dx.doi.org/10.1063/1.342834
18.
18. Y. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, J. Appl. Phys. 109, 123519 (2011).
http://dx.doi.org/10.1063/1.3597903
19.
19. A. Sakai, N. Taoka, O. Nakatsuka, S. Zaima, and Y. Yasuda, Appl. Phys. Lett. 86, 221916 (2005).
http://dx.doi.org/10.1063/1.1943493
20.
20. G. Capellini, M. De Seta, Y. Busby, M. Pea, F. Evangelisti, G. Nicotra, C. Spinella, M. Nardone, and C. Ferrari, J. Appl. Phys. 107, 063504 (2010).
http://dx.doi.org/10.1063/1.3327435
21.
21. B. Cunningham, J. O. Chu, and S. Akbar, Appl. Phys. Lett. 59, 3574 (1991).
http://dx.doi.org/10.1063/1.105636
22.
22. A. E. Blakeslee, Mater. Res. Soc. Symp. Proc. 148, 217 (1989).
http://dx.doi.org/10.1557/PROC-148-217
23.
23. S. Harada, J. Kikkawa, Y. Nakamura, G. Wang, M. Caymax, and A. Sakai, Thin Solid Films 520, 3245 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.10.092
24.
24. J. Bai, J. S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, Appl. Phys. Lett. 90, 101902 (2007).
http://dx.doi.org/10.1063/1.2711276
25.
25. H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
http://dx.doi.org/10.1063/1.125187
26.
26. A. Marzegalli, F. Isa, H. Groiss, E. Müller, C. V. Falub, A. G. Taboada, P. Niedermann, G. Isella, F. Schäffler, F. Montalenti, H. von Känel, and Leo Miglio, Adv. Mater. 25, 4408 (2013).
http://dx.doi.org/10.1002/adma.201300550
27.
27. C. Rosenblad, H. R. Deller, A. Dommann, T. Meyer, P. Schroeter, and H. von Känel, J. Vac. Sci. Technol. A 16, 2785 (1998).
http://dx.doi.org/10.1116/1.581422
28.
28. C. V. Falub, H. von Känel, F. Isa, R. Bergamaschini, A. Marzegalli, D. Chrastina, G. Isella, E. Müller, P. Niedermann, and L. Miglio, Science 335, 1330 (2012).
http://dx.doi.org/10.1126/science.1217666
29.
29. D. Chrastina, B. Rössner, G. Isella, H. von Känel, J. P. Hague, T. Hackbarth, H. J. Herzog, K. H. Hieber, and U. König, “LEPECVD: A production technique for SiGe MOSFETs and MODFETs,” in Materials for Information Technology, edited by Ehrenfried Zschech, Caroline Whelan, and Thomas Mikolajick (Springer, 2005), pp. 1729.
30.
30. S. Marchionna, A. Virtuani, M. Acciarri, G. Isella, and H. von Kaenel, Mater. Sci. Semicond. Process. 9, 802 (2006).
http://dx.doi.org/10.1016/j.mssp.2006.09.003
31.
31. J. W. P. Hsu, E. A. Fitzgerald, Y. H. Xie, P. J. Silverman, and M. J. Cardillo, Appl. Phys. Lett. 61, 1293 (1992).
http://dx.doi.org/10.1063/1.107569
32.
32. R. Hull and J. C. Bean, Appl. Phys. Lett. 54, 925 (1989).
http://dx.doi.org/10.1063/1.100810
33.
33. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd revised ed. (Krieger, Malabar, 1992).
34.
34. C. S. Peng, Y. K. Li, Q. Huang, and J. M. Zhou, J. Cryst. Growth 227–228, 740 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)00818-1
35.
35. G. M. Xia, J. L. Hoyt, and M. Canonico, J. Appl. Phys. 101, 044901 (2007).
http://dx.doi.org/10.1063/1.2430904
36.
36.In Ref. 35, a value E = 4.66 eV was proposed, but it cannot be used for out-of-equilibrium growth conditions, such as the present ones, where vacancies are likely to be created during growth, so that the formation energy plays a minor role. As a consequence, much lower E values are expected.34
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4829976
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Perspective view SEM micrographs of SiGe crystals with different Ge content () deposited on Si pillars with lateral size = 5 m. (a) = 0.05, (b) = 0.20, (c) = 0.25, (d) = 0.30, (e) = 0.40, (f) = 0.50, (g) = 1.00.

Image of FIG. 2.

Click to view

FIG. 2.

TDD for SiGe planar layers and crystals deposited on Si pillars with different sides (5 m, 9 m, and 15 m) as a function of . The height of the crystals with = 0.05 and = 0.25 is 15 m, in the other cases = 8 m.

Image of FIG. 3.

Click to view

FIG. 3.

AFM scan of SiGe (a) and SiGe (b) planar regions after defect etching, etch pits are visible as dark spots. (c) and (d) AFM images of the top surface of SiGe and SiGe crystals, respectively ( = 5 m, = 8 m) after defect etching. Etch pits are visible in (d), absent in (c). (e) and (f) SEM images of the same crystals in (c) and (d), etch pits on the lateral sidewalls of the crystals are marked by blue arrows. The highly defected material on the Si sidewalls (marked by red arrows) is related to the rough interface produced by the etching fabrication process. The dashed red line depicts the SiGe/Si(001) interface.

Image of FIG. 4.

Click to view

FIG. 4.

(a) TDD on the (001) top surface of Ge crystals with different heights , deposited on Si pillars with = 5 m. (b) AFM scan (TOP) of the (001) top surface of a Ge crystal ( = 5 m, = 8 m) after defect etching in solution and SEM micrograph in perspective view (BOTTOM) before defect etching.

Image of FIG. 5.

Click to view

FIG. 5.

(a) SEM perspective image of a crystal grown in two steps on Si pillars with = 5 m after defect etching in solution. First step: = 8 m and = 0.20, second step: = 8 m and = 0.40. (b) same of (a) but the steps are: = 8 m, = 0.10 and = 8 m and = 0.40.

Tables

Generic image for table

Click to view

TABLE I.

List of SiGe samples and their respective growth parameters.

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4829976
2013-11-18
2014-04-21

Abstract

We show that the Ge concentration in SiGe alloys grown under strong out-of-equilibrium conditions determines the character of the population of threading dislocations (TDs). Above a critical value ∼ 0.25 vertical TDs dominate over the common slanted ones. This is demonstrated by exploiting a statistically relevant analysis of TD orientation in micrometer-sized SiGe crystals, deposited on deeply patterned Si(001) substrates. Experiments involving an abrupt change of composition in the middle of the crystals clarify the role of misfit-strain versus chemical composition in favoring the vertical orientation of TDs. A scheme invoking vacancy-mediated climb mechanism is proposed to rationalize the observed behavior.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4829976.html;jsessionid=5q5cveclnphso.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4829976&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Onset of vertical threading dislocations in Si1−x Ge x /Si (001) at a critical Ge concentration
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4829976
10.1063/1.4829976
SEARCH_EXPAND_ITEM