1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Onset of vertical threading dislocations in Si1−x Ge x /Si (001) at a critical Ge concentration
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/5/10.1063/1.4829976
1.
1. M. Bonfanti, E. Grilli, M. Guzzi, M. Virgilio, G. Grosso, D. Chrastina, G. Isella, H. von Känel, and A. Neels, Phys. Rev. B 78, 041407 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.041407
2.
2. P. Chaisakul, D. Marris-Morini, M. S. Rouifed, G. Isella, D. Chrastina, J. Frigerio, X. Le Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, Opt. Express 20, 3219 (2012).
http://dx.doi.org/10.1364/OE.20.003219
3.
3. M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005).
http://dx.doi.org/10.1063/1.1819976
4.
4. J. W. Matthews, S. Mader, and T. B. Light, J. Appl. Phys. 41, 3800 (1970).
http://dx.doi.org/10.1063/1.1659510
5.
5. L. M. Giovane, H. C. Luan, A. M. Agarwal, and L. C. Kimerling, Appl. Phys. Lett. 78, 541 (2001).
http://dx.doi.org/10.1063/1.1341230
6.
6. A. D. Kurtz, S. A. Kulin, and B. L. Averbach, Phys. Rev. 101, 1285 (1956).
http://dx.doi.org/10.1103/PhysRev.101.1285
7.
7. G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menéndez, Phys. Rev. B 84, 205307 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.205307
8.
8. D. J. Paul, Semicond. Sci. Technol. 19, R75 (2004).
http://dx.doi.org/10.1088/0268-1242/19/10/R02
9.
9. M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, Appl. Phys. Lett. 53, 2293 (1988).
http://dx.doi.org/10.1063/1.100257
10.
10. Y. Yamamoto, G. Kozlowski, P. Zaumseil, and B. Tillack, Thin Solid Films 520, 3216 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.10.095
11.
11. E. Ayers, J. Electron. Mater. 37, 1511 (2008).
http://dx.doi.org/10.1007/s11664-008-0504-6
12.
12. E. A. Fitzgerald, J. Vac. Sci. Technol. B 7, 782 (1989).
http://dx.doi.org/10.1116/1.584600
13.
13. T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, Appl. Phys. Lett. 76, 3700 (2000).
http://dx.doi.org/10.1063/1.126754
14.
14. E. P. Kvam, D. M. Maher, and C. J. Humphreys, J. Mater. Res. 5, 1900 (1990).
http://dx.doi.org/10.1557/JMR.1990.1900
15.
15. R. People and J. C. Bean, Appl. Phys. Lett. 47, 322 (1985).
http://dx.doi.org/10.1063/1.96206
16.
16. J. S. Speck, M. A. Brewer, G. Beltz, A. E. Romanov, and W. Pompe, J. Appl. Phys. 80, 3808 (1996).
http://dx.doi.org/10.1063/1.363334
17.
17. E. A. Fitzgerald, G. P. Watson, R. E. Proano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Appl. Phys. 65, 2220 (1989).
http://dx.doi.org/10.1063/1.342834
18.
18. Y. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, J. Appl. Phys. 109, 123519 (2011).
http://dx.doi.org/10.1063/1.3597903
19.
19. A. Sakai, N. Taoka, O. Nakatsuka, S. Zaima, and Y. Yasuda, Appl. Phys. Lett. 86, 221916 (2005).
http://dx.doi.org/10.1063/1.1943493
20.
20. G. Capellini, M. De Seta, Y. Busby, M. Pea, F. Evangelisti, G. Nicotra, C. Spinella, M. Nardone, and C. Ferrari, J. Appl. Phys. 107, 063504 (2010).
http://dx.doi.org/10.1063/1.3327435
21.
21. B. Cunningham, J. O. Chu, and S. Akbar, Appl. Phys. Lett. 59, 3574 (1991).
http://dx.doi.org/10.1063/1.105636
22.
22. A. E. Blakeslee, Mater. Res. Soc. Symp. Proc. 148, 217 (1989).
http://dx.doi.org/10.1557/PROC-148-217
23.
23. S. Harada, J. Kikkawa, Y. Nakamura, G. Wang, M. Caymax, and A. Sakai, Thin Solid Films 520, 3245 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.10.092
24.
24. J. Bai, J. S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, Appl. Phys. Lett. 90, 101902 (2007).
http://dx.doi.org/10.1063/1.2711276
25.
25. H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
http://dx.doi.org/10.1063/1.125187
26.
26. A. Marzegalli, F. Isa, H. Groiss, E. Müller, C. V. Falub, A. G. Taboada, P. Niedermann, G. Isella, F. Schäffler, F. Montalenti, H. von Känel, and Leo Miglio, Adv. Mater. 25, 4408 (2013).
http://dx.doi.org/10.1002/adma.201300550
27.
27. C. Rosenblad, H. R. Deller, A. Dommann, T. Meyer, P. Schroeter, and H. von Känel, J. Vac. Sci. Technol. A 16, 2785 (1998).
http://dx.doi.org/10.1116/1.581422
28.
28. C. V. Falub, H. von Känel, F. Isa, R. Bergamaschini, A. Marzegalli, D. Chrastina, G. Isella, E. Müller, P. Niedermann, and L. Miglio, Science 335, 1330 (2012).
http://dx.doi.org/10.1126/science.1217666
29.
29. D. Chrastina, B. Rössner, G. Isella, H. von Känel, J. P. Hague, T. Hackbarth, H. J. Herzog, K. H. Hieber, and U. König, “LEPECVD: A production technique for SiGe MOSFETs and MODFETs,” in Materials for Information Technology, edited by Ehrenfried Zschech, Caroline Whelan, and Thomas Mikolajick (Springer, 2005), pp. 1729.
30.
30. S. Marchionna, A. Virtuani, M. Acciarri, G. Isella, and H. von Kaenel, Mater. Sci. Semicond. Process. 9, 802 (2006).
http://dx.doi.org/10.1016/j.mssp.2006.09.003
31.
31. J. W. P. Hsu, E. A. Fitzgerald, Y. H. Xie, P. J. Silverman, and M. J. Cardillo, Appl. Phys. Lett. 61, 1293 (1992).
http://dx.doi.org/10.1063/1.107569
32.
32. R. Hull and J. C. Bean, Appl. Phys. Lett. 54, 925 (1989).
http://dx.doi.org/10.1063/1.100810
33.
33. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd revised ed. (Krieger, Malabar, 1992).
34.
34. C. S. Peng, Y. K. Li, Q. Huang, and J. M. Zhou, J. Cryst. Growth 227–228, 740 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)00818-1
35.
35. G. M. Xia, J. L. Hoyt, and M. Canonico, J. Appl. Phys. 101, 044901 (2007).
http://dx.doi.org/10.1063/1.2430904
36.
36.In Ref. 35, a value E = 4.66 eV was proposed, but it cannot be used for out-of-equilibrium growth conditions, such as the present ones, where vacancies are likely to be created during growth, so that the formation energy plays a minor role. As a consequence, much lower E values are expected.34
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4829976
Loading
/content/aip/journal/aplmater/1/5/10.1063/1.4829976
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4829976
2013-11-18
2014-12-22

Abstract

We show that the Ge concentration in SiGe alloys grown under strong out-of-equilibrium conditions determines the character of the population of threading dislocations (TDs). Above a critical value ∼ 0.25 vertical TDs dominate over the common slanted ones. This is demonstrated by exploiting a statistically relevant analysis of TD orientation in micrometer-sized SiGe crystals, deposited on deeply patterned Si(001) substrates. Experiments involving an abrupt change of composition in the middle of the crystals clarify the role of misfit-strain versus chemical composition in favoring the vertical orientation of TDs. A scheme invoking vacancy-mediated climb mechanism is proposed to rationalize the observed behavior.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4829976.html;jsessionid=tof1sk4of15g.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4829976&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Onset of vertical threading dislocations in Si1−x Ge x /Si (001) at a critical Ge concentration
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4829976
10.1063/1.4829976
SEARCH_EXPAND_ITEM