Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Bonfanti, E. Grilli, M. Guzzi, M. Virgilio, G. Grosso, D. Chrastina, G. Isella, H. von Känel, and A. Neels, Phys. Rev. B 78, 041407 (2008).
2. P. Chaisakul, D. Marris-Morini, M. S. Rouifed, G. Isella, D. Chrastina, J. Frigerio, X. Le Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, Opt. Express 20, 3219 (2012).
3. M. L. Lee, E. A. Fitzgerald, M. T. Bulsara, M. T. Currie, and A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005).
4. J. W. Matthews, S. Mader, and T. B. Light, J. Appl. Phys. 41, 3800 (1970).
5. L. M. Giovane, H. C. Luan, A. M. Agarwal, and L. C. Kimerling, Appl. Phys. Lett. 78, 541 (2001).
6. A. D. Kurtz, S. A. Kulin, and B. L. Averbach, Phys. Rev. 101, 1285 (1956).
7. G. Grzybowski, R. Roucka, J. Mathews, L. Jiang, R. T. Beeler, J. Kouvetakis, and J. Menéndez, Phys. Rev. B 84, 205307 (2011).
8. D. J. Paul, Semicond. Sci. Technol. 19, R75 (2004).
9. M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, Appl. Phys. Lett. 53, 2293 (1988).
10. Y. Yamamoto, G. Kozlowski, P. Zaumseil, and B. Tillack, Thin Solid Films 520, 3216 (2012).
11. E. Ayers, J. Electron. Mater. 37, 1511 (2008).
12. E. A. Fitzgerald, J. Vac. Sci. Technol. B 7, 782 (1989).
13. T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, and D. A. Antoniadis, Appl. Phys. Lett. 76, 3700 (2000).
14. E. P. Kvam, D. M. Maher, and C. J. Humphreys, J. Mater. Res. 5, 1900 (1990).
15. R. People and J. C. Bean, Appl. Phys. Lett. 47, 322 (1985).
16. J. S. Speck, M. A. Brewer, G. Beltz, A. E. Romanov, and W. Pompe, J. Appl. Phys. 80, 3808 (1996).
17. E. A. Fitzgerald, G. P. Watson, R. E. Proano, D. G. Ast, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Appl. Phys. 65, 2220 (1989).
18. Y. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, J. Appl. Phys. 109, 123519 (2011).
19. A. Sakai, N. Taoka, O. Nakatsuka, S. Zaima, and Y. Yasuda, Appl. Phys. Lett. 86, 221916 (2005).
20. G. Capellini, M. De Seta, Y. Busby, M. Pea, F. Evangelisti, G. Nicotra, C. Spinella, M. Nardone, and C. Ferrari, J. Appl. Phys. 107, 063504 (2010).
21. B. Cunningham, J. O. Chu, and S. Akbar, Appl. Phys. Lett. 59, 3574 (1991).
22. A. E. Blakeslee, Mater. Res. Soc. Symp. Proc. 148, 217 (1989).
23. S. Harada, J. Kikkawa, Y. Nakamura, G. Wang, M. Caymax, and A. Sakai, Thin Solid Films 520, 3245 (2012).
24. J. Bai, J. S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, and M. Dudley, Appl. Phys. Lett. 90, 101902 (2007).
25. H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).
26. A. Marzegalli, F. Isa, H. Groiss, E. Müller, C. V. Falub, A. G. Taboada, P. Niedermann, G. Isella, F. Schäffler, F. Montalenti, H. von Känel, and Leo Miglio, Adv. Mater. 25, 4408 (2013).
27. C. Rosenblad, H. R. Deller, A. Dommann, T. Meyer, P. Schroeter, and H. von Känel, J. Vac. Sci. Technol. A 16, 2785 (1998).
28. C. V. Falub, H. von Känel, F. Isa, R. Bergamaschini, A. Marzegalli, D. Chrastina, G. Isella, E. Müller, P. Niedermann, and L. Miglio, Science 335, 1330 (2012).
29. D. Chrastina, B. Rössner, G. Isella, H. von Känel, J. P. Hague, T. Hackbarth, H. J. Herzog, K. H. Hieber, and U. König, “LEPECVD: A production technique for SiGe MOSFETs and MODFETs,” in Materials for Information Technology, edited by Ehrenfried Zschech, Caroline Whelan, and Thomas Mikolajick (Springer, 2005), pp. 1729.
30. S. Marchionna, A. Virtuani, M. Acciarri, G. Isella, and H. von Kaenel, Mater. Sci. Semicond. Process. 9, 802 (2006).
31. J. W. P. Hsu, E. A. Fitzgerald, Y. H. Xie, P. J. Silverman, and M. J. Cardillo, Appl. Phys. Lett. 61, 1293 (1992).
32. R. Hull and J. C. Bean, Appl. Phys. Lett. 54, 925 (1989).
33. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd revised ed. (Krieger, Malabar, 1992).
34. C. S. Peng, Y. K. Li, Q. Huang, and J. M. Zhou, J. Cryst. Growth 227–228, 740 (2001).
35. G. M. Xia, J. L. Hoyt, and M. Canonico, J. Appl. Phys. 101, 044901 (2007).
36.In Ref. 35, a value E = 4.66 eV was proposed, but it cannot be used for out-of-equilibrium growth conditions, such as the present ones, where vacancies are likely to be created during growth, so that the formation energy plays a minor role. As a consequence, much lower E values are expected.34

Data & Media loading...


Article metrics loading...



We show that the Ge concentration in SiGe alloys grown under strong out-of-equilibrium conditions determines the character of the population of threading dislocations (TDs). Above a critical value ∼ 0.25 vertical TDs dominate over the common slanted ones. This is demonstrated by exploiting a statistically relevant analysis of TD orientation in micrometer-sized SiGe crystals, deposited on deeply patterned Si(001) substrates. Experiments involving an abrupt change of composition in the middle of the crystals clarify the role of misfit-strain versus chemical composition in favoring the vertical orientation of TDs. A scheme invoking vacancy-mediated climb mechanism is proposed to rationalize the observed behavior.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd