Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Ohtomo and H. Y. Hwang, Nature (London) 427(6973), 423 (2004).
2. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313(5795), 1942 (2006).
3. A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. Van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6(7), 493 (2007).
4. N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J. M. Triscone, and J. Mannhart, Science 317(5842), 1196 (2007).
5. A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J. M. Triscone, Nature (London) 456(7222), 624 (2008).
6. L. Li, C. Richter, J. Mannhart, and R. C. Ashoori, Nat. Phys. 7(10), 762 (2011).
7. D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom, and V. Chandrasekhar, Phys. Rev. Lett. 107(5), 056802 (2011).
8. J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, and K. A. Moler, Nat. Phys. 7(10), 767 (2011).
9. M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and Y. Dagan, Phys. Rev. Lett. 104(12), 126802 (2010).
10. A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J. M. Triscone, Phys. Rev. Lett. 104(12), 126803 (2010).
11. C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nat. Mater. 7(4), 298 (2008).
12. C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323(5917), 1026 (2009).
13. P. Irvin, M. Huang, F. J. Wong, T. D. Sanders, Y. Suzuki, and J. Levy, Appl. Phys. Lett. 102(10), 103113 (2013).
14. P. Irvin, Y. Ma, D. F. Bogorin, C. Cen, C. W. Bark, C. M. Folkman, C.-B. Eom, and J. Levy, Nat. Photon. 4(12), 849 (2010).
15. Y. Ma, M. Huang, S. Ryu, C. W. Bark, C. B. Eom, P. Irvin, and J. Levy, Nano Lett. 13(6), 2884 (2013).
16. D. F. Bogorin, C. W. Bark, H. W. Jang, C. Cen, C. B. Eom, and J. Levy, Appl. Phys. Lett. 97(1), 013102 (2010).
17. G. L. Cheng, P. F. Siles, F. Bi, C. Cen, D. F. Bogorin, C. W. Bark, C. M. Folkman, J. W. Park, C. B. Eom, G. Medeiros-Ribeiro, and J. Levy, Nat. Nanotechnol. 6(6), 343 (2011).
18. P. Irvin, J. P. Veazey, G. Cheng, S. Lu, C. W. Bark, S. Ryu, C. B. Eom, and J. Levy, Nano Lett. 13(2), 364 (2013).
19. G. L. Cheng, J. P. Veazey, P. Irvin, C. Cen, D. F. Bogorin, F. Bi, M. C. Huang, S. C. Lu, C. W. Bark, S. Ryu, K. H. Cho, C. B. Eom, and J. Levy, Phys. Rev. X 3(1), 011021 (2013).
20. J. P. Veazey, G. L. Cheng, P. Irvin, C. Cen, D. F. Bogorin, F. Bi, M. C. Huang, C. W. Bark, S. Ryu, K. H. Cho, C. B. Eom, and J. Levy, Nanotechnology 24(37), 375201 (2013).
21. Y. W. Xie, C. Bell, T. Yajima, Y. Hikita, and H. Y. Hwang, Nano Lett. 10(7), 2588 (2010).
22. B. C. Huang, Y. P. Chiu, P. C. Huang, W. C. Wang, V. T. Tra, J. C. Yang, Q. He, J. Y. Lin, C. S. Chang, and Y. H. Chu, Phys. Rev. Lett. 109(24), 246807 (2012).
23. M. Basletic, J. L. Maurice, C. Carretero, G. Herranz, O. Copie, M. Bibes, E. Jacquet, K. Bouzehouane, S. Fusil, and A. Barthelemy, Nat. Mater. 7(8), 621 (2008).
24. J. L. Maurice, C. Carretero, M. J. Casanove, K. Bouzehouane, S. Guyard, E. Larquet, and J. P. Contour, Phys. Status Solidi A 203(9), 2209 (2006).
25. C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert, and K. Urban, Phys. Rev. B 79(8), 081405R (2009).
26. C. W. Bark, P. Sharma, Y. Wang, S. H. Baek, S. Lee, S. Ryu, C. M. Folkman, T. R. Paudel, A. Kumar, S. V. Kalinin, A. Sokolov, E. Y. Tsymbal, M. S. Rzchowski, A. Gruverman, and C. B. Eom, Nano Lett. 12(4), 1765 (2012).
27. M. C. Huang, F. Bi, C. W. Bark, S. Ryu, K. H. Cho, C. B. Eom, and J. Levy, preprint arXiv:1208.2687 (2012).
28. F. Bi, M. C. Huang, C. W. Bark, S. Ryu, S. Lee, C. B. Eom, and J. Levy, preprint arXiv:1302.0204 (2013).
29. J. W. Park, D. F. Bogorin, C. Cen, D. A. Felker, Y. Zhang, C. T. Nelson, C. W. Bark, C. M. Folkman, X. Q. Pan, M. S. Rzchowski, J. Levy, and C. B. Eom, Nat. Commun. 1, 94 (2010).
30. C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, Proc. Natl. Acad. Sci. U.S.A. 108(12), 4720 (2011).
31. S. Jesse, B. Mirman, and S. V. Kalinin, Appl. Phys. Lett. 89(2), 022906 (2006).
32. F. Bi, D. F. Bogorin, C. Cen, C. W. Bark, J. W. Park, C. B. Eom, and J. Levy, Appl. Phys. Lett. 97(17), 173110 (2010).
33. S. V. Kalinin, S. Jesse, B. J. Rodriguez, J. Shin, A. P. Baddorf, H. N. Lee, A. Borisevich, and S. J. Pennycook, Nanotechnology 17(14), 3400 (2006).
34. A. Gruverman and S. V. Kalinin, J. Mater. Sci. 41(1), 107 (2006).
35. V. Vonk, M. Huijben, K. J. I. Driessen, P. Tinnemans, A. Brinkman, S. Harkema, and H. Graafsma, Phys. Rev. B 75(23), 235417 (2007).
36. P. R. Willmott, S. A. Pauli, R. Herger, C. M. Schleputz, D. Martoccia, B. D. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, and Y. Yacoby, Phys. Rev. Lett. 99(15), 155502 (2007).
37. A. Kumar, T. M. Arruda, Y. Kim, I. N. Ivanov, S. Jesse, C. W. Bark, N. C. Bristowe, E. Artacho, P. B. Littlewood, C. B. Eom, and S. V. Kalinin, ACS Nano 6(5), 3841 (2012).
38. S. V. Kalinin, A. Borisevich, and D. Fong, ACS Nano 6(12), 10423 (2012).
39. Y. Kim, A. N. Morozovska, A. Kumar, S. Jesse, E. A. Eliseev, F. Alibart, D. Strukov, and S. V. Kalinin, ACS Nano 6(8), 7026 (2012).
40. C. Cancellieri, D. Fontaine, S. Gariglio, N. Reyren, A. D. Caviglia, A. Fete, S. J. Leake, S. A. Pauli, P. R. Willmott, M. Stengel, P. Ghosez, and J. M. Triscone, Phys. Rev. Lett. 107(5), 056102 (2011).
41. F. Schoofs, M. A. Carpenter, M. E. Vickers, M. Egilmez, T. Fix, J. E. Kleibeuker, J. L. Macmanus-Driscoll, and M. G. Blamire, J. Phys.: Condens. Matter 25 (17), 175005 (2013).
42. H. K. Sato, C. Bell, Y. Hikita, and H. Y. Hwang, Appl. Phys. Lett. 102(25), 251602 (2013).
43. K. J. Zhou, M. Radovic, J. Schlappa, V. Strocov, R. Frison, J. Mesot, L. Patthey, and T. Schmitt, Phys. Rev. B 83(20), 201402R (2011).
44. M. Salluzzo, J. C. Cezar, N. B. Brookes, V. Bisogni, G. M. Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, and G. Ghiringhelli, Phys. Rev. Lett. 102(16), 166804 (2009).
45. J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, Nature (London) 430(7001), 758 (2004).
46. P. Zubko, G. Catalan, A. Buckley, P. R. L. Welche, and J. F. Scott, Phys. Rev. Lett. 99(16), 167601 (2007).
47. R. Pentcheva and W. E. Pickett, Phys. Rev. Lett. 102(10), 107602 (2009).
48. Z. S. Popovic, S. Satpathy, and R. M. Martin, Phys. Rev. Lett. 101(25), 256801 (2008).
49. S. Y. Park and A. J. Millis, Phys. Rev. B 87(20), 205145 (2013).
50. M. S. Park, S. H. Rhim, and A. J. Freeman, Phys. Rev. B 74(20), 205416 (2006).
51. S. Okamoto, A. J. Millis, and N. A. Spaldin, Phys. Rev. Lett. 97(5), 056802 (2006).

Data & Media loading...


Article metrics loading...



The interface between LaAlO and TiO-terminated SrTiO can be switched between metastable conductive and insulating states using a conductive atomic force microscope probe. Determination of the nanoscale dimensions has previously required a destructive readout (e.g., local restoration of an insulating state). Here it is shown that high-resolution non-destructive imaging of conductive nanostructures can be achieved using a specific piezoresponse force microscopy (PFM) technique. Images of conductive and insulating nanoscale features are achieved with feature sizes as small as 30 nm. The measured nanowire width from PFM is well correlated with those obtained from nanowire erasure.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd