1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Direct imaging of LaAlO3/SrTiO3 nanostructures using piezoresponse force microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/5/10.1063/1.4831855
1.
1. A. Ohtomo and H. Y. Hwang, Nature (London) 427(6973), 423 (2004).
http://dx.doi.org/10.1038/nature02308
2.
2. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313(5795), 1942 (2006).
http://dx.doi.org/10.1126/science.1131091
3.
3. A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. Van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6(7), 493 (2007).
http://dx.doi.org/10.1038/nmat1931
4.
4. N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J. M. Triscone, and J. Mannhart, Science 317(5842), 1196 (2007).
http://dx.doi.org/10.1126/science.1146006
5.
5. A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J. M. Triscone, Nature (London) 456(7222), 624 (2008).
http://dx.doi.org/10.1038/nature07576
6.
6. L. Li, C. Richter, J. Mannhart, and R. C. Ashoori, Nat. Phys. 7(10), 762 (2011).
http://dx.doi.org/10.1038/nphys2080
7.
7. D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom, and V. Chandrasekhar, Phys. Rev. Lett. 107(5), 056802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.056802
8.
8. J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, and K. A. Moler, Nat. Phys. 7(10), 767 (2011).
http://dx.doi.org/10.1038/nphys2079
9.
9. M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and Y. Dagan, Phys. Rev. Lett. 104(12), 126802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.126802
10.
10. A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J. M. Triscone, Phys. Rev. Lett. 104(12), 126803 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.126803
11.
11. C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nat. Mater. 7(4), 298 (2008).
http://dx.doi.org/10.1038/nmat2136
12.
12. C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323(5917), 1026 (2009).
http://dx.doi.org/10.1126/science.1168294
13.
13. P. Irvin, M. Huang, F. J. Wong, T. D. Sanders, Y. Suzuki, and J. Levy, Appl. Phys. Lett. 102(10), 103113 (2013).
http://dx.doi.org/10.1063/1.4795725
14.
14. P. Irvin, Y. Ma, D. F. Bogorin, C. Cen, C. W. Bark, C. M. Folkman, C.-B. Eom, and J. Levy, Nat. Photon. 4(12), 849 (2010).
http://dx.doi.org/10.1038/nphoton.2010.238
15.
15. Y. Ma, M. Huang, S. Ryu, C. W. Bark, C. B. Eom, P. Irvin, and J. Levy, Nano Lett. 13(6), 2884 (2013).
http://dx.doi.org/10.1021/nl401219v
16.
16. D. F. Bogorin, C. W. Bark, H. W. Jang, C. Cen, C. B. Eom, and J. Levy, Appl. Phys. Lett. 97(1), 013102 (2010).
http://dx.doi.org/10.1063/1.3459138
17.
17. G. L. Cheng, P. F. Siles, F. Bi, C. Cen, D. F. Bogorin, C. W. Bark, C. M. Folkman, J. W. Park, C. B. Eom, G. Medeiros-Ribeiro, and J. Levy, Nat. Nanotechnol. 6(6), 343 (2011).
http://dx.doi.org/10.1038/nnano.2011.56
18.
18. P. Irvin, J. P. Veazey, G. Cheng, S. Lu, C. W. Bark, S. Ryu, C. B. Eom, and J. Levy, Nano Lett. 13(2), 364 (2013).
http://dx.doi.org/10.1021/nl3033729
19.
19. G. L. Cheng, J. P. Veazey, P. Irvin, C. Cen, D. F. Bogorin, F. Bi, M. C. Huang, S. C. Lu, C. W. Bark, S. Ryu, K. H. Cho, C. B. Eom, and J. Levy, Phys. Rev. X 3(1), 011021 (2013).
http://dx.doi.org/10.1103/PhysRevX.3.011021
20.
20. J. P. Veazey, G. L. Cheng, P. Irvin, C. Cen, D. F. Bogorin, F. Bi, M. C. Huang, C. W. Bark, S. Ryu, K. H. Cho, C. B. Eom, and J. Levy, Nanotechnology 24(37), 375201 (2013).
http://dx.doi.org/10.1088/0957-4484/24/37/375201
21.
21. Y. W. Xie, C. Bell, T. Yajima, Y. Hikita, and H. Y. Hwang, Nano Lett. 10(7), 2588 (2010).
http://dx.doi.org/10.1021/nl1012695
22.
22. B. C. Huang, Y. P. Chiu, P. C. Huang, W. C. Wang, V. T. Tra, J. C. Yang, Q. He, J. Y. Lin, C. S. Chang, and Y. H. Chu, Phys. Rev. Lett. 109(24), 246807 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.246807
23.
23. M. Basletic, J. L. Maurice, C. Carretero, G. Herranz, O. Copie, M. Bibes, E. Jacquet, K. Bouzehouane, S. Fusil, and A. Barthelemy, Nat. Mater. 7(8), 621 (2008).
http://dx.doi.org/10.1038/nmat2223
24.
24. J. L. Maurice, C. Carretero, M. J. Casanove, K. Bouzehouane, S. Guyard, E. Larquet, and J. P. Contour, Phys. Status Solidi A 203(9), 2209 (2006).
http://dx.doi.org/10.1002/pssa.200566033
25.
25. C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert, and K. Urban, Phys. Rev. B 79(8), 081405R (2009).
http://dx.doi.org/10.1103/PhysRevB.79.081405
26.
26. C. W. Bark, P. Sharma, Y. Wang, S. H. Baek, S. Lee, S. Ryu, C. M. Folkman, T. R. Paudel, A. Kumar, S. V. Kalinin, A. Sokolov, E. Y. Tsymbal, M. S. Rzchowski, A. Gruverman, and C. B. Eom, Nano Lett. 12(4), 1765 (2012).
http://dx.doi.org/10.1021/nl3001088
27.
27. M. C. Huang, F. Bi, C. W. Bark, S. Ryu, K. H. Cho, C. B. Eom, and J. Levy, preprint arXiv:1208.2687 (2012).
28.
28. F. Bi, M. C. Huang, C. W. Bark, S. Ryu, S. Lee, C. B. Eom, and J. Levy, preprint arXiv:1302.0204 (2013).
29.
29. J. W. Park, D. F. Bogorin, C. Cen, D. A. Felker, Y. Zhang, C. T. Nelson, C. W. Bark, C. M. Folkman, X. Q. Pan, M. S. Rzchowski, J. Levy, and C. B. Eom, Nat. Commun. 1, 94 (2010).
http://dx.doi.org/10.1038/ncomms1096
30.
30. C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, Proc. Natl. Acad. Sci. U.S.A. 108(12), 4720 (2011).
http://dx.doi.org/10.1073/pnas.1014849108
31.
31. S. Jesse, B. Mirman, and S. V. Kalinin, Appl. Phys. Lett. 89(2), 022906 (2006).
http://dx.doi.org/10.1063/1.2221496
32.
32. F. Bi, D. F. Bogorin, C. Cen, C. W. Bark, J. W. Park, C. B. Eom, and J. Levy, Appl. Phys. Lett. 97(17), 173110 (2010).
http://dx.doi.org/10.1063/1.3506509
33.
33. S. V. Kalinin, S. Jesse, B. J. Rodriguez, J. Shin, A. P. Baddorf, H. N. Lee, A. Borisevich, and S. J. Pennycook, Nanotechnology 17(14), 3400 (2006).
http://dx.doi.org/10.1088/0957-4484/17/14/010
34.
34. A. Gruverman and S. V. Kalinin, J. Mater. Sci. 41(1), 107 (2006).
http://dx.doi.org/10.1007/s10853-005-5946-0
35.
35. V. Vonk, M. Huijben, K. J. I. Driessen, P. Tinnemans, A. Brinkman, S. Harkema, and H. Graafsma, Phys. Rev. B 75(23), 235417 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235417
36.
36. P. R. Willmott, S. A. Pauli, R. Herger, C. M. Schleputz, D. Martoccia, B. D. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, and Y. Yacoby, Phys. Rev. Lett. 99(15), 155502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.155502
37.
37. A. Kumar, T. M. Arruda, Y. Kim, I. N. Ivanov, S. Jesse, C. W. Bark, N. C. Bristowe, E. Artacho, P. B. Littlewood, C. B. Eom, and S. V. Kalinin, ACS Nano 6(5), 3841 (2012).
http://dx.doi.org/10.1021/nn204960c
38.
38. S. V. Kalinin, A. Borisevich, and D. Fong, ACS Nano 6(12), 10423 (2012).
http://dx.doi.org/10.1021/nn304930x
39.
39. Y. Kim, A. N. Morozovska, A. Kumar, S. Jesse, E. A. Eliseev, F. Alibart, D. Strukov, and S. V. Kalinin, ACS Nano 6(8), 7026 (2012).
http://dx.doi.org/10.1021/nn3020757
40.
40. C. Cancellieri, D. Fontaine, S. Gariglio, N. Reyren, A. D. Caviglia, A. Fete, S. J. Leake, S. A. Pauli, P. R. Willmott, M. Stengel, P. Ghosez, and J. M. Triscone, Phys. Rev. Lett. 107(5), 056102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.056102
41.
41. F. Schoofs, M. A. Carpenter, M. E. Vickers, M. Egilmez, T. Fix, J. E. Kleibeuker, J. L. Macmanus-Driscoll, and M. G. Blamire, J. Phys.: Condens. Matter 25 (17), 175005 (2013).
http://dx.doi.org/10.1088/0953-8984/25/17/175005
42.
42. H. K. Sato, C. Bell, Y. Hikita, and H. Y. Hwang, Appl. Phys. Lett. 102(25), 251602 (2013).
http://dx.doi.org/10.1063/1.4812353
43.
43. K. J. Zhou, M. Radovic, J. Schlappa, V. Strocov, R. Frison, J. Mesot, L. Patthey, and T. Schmitt, Phys. Rev. B 83(20), 201402R (2011).
http://dx.doi.org/10.1103/PhysRevB.83.201402
44.
44. M. Salluzzo, J. C. Cezar, N. B. Brookes, V. Bisogni, G. M. Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, and G. Ghiringhelli, Phys. Rev. Lett. 102(16), 166804 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.166804
45.
45. J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, Nature (London) 430(7001), 758 (2004).
http://dx.doi.org/10.1038/nature02773
46.
46. P. Zubko, G. Catalan, A. Buckley, P. R. L. Welche, and J. F. Scott, Phys. Rev. Lett. 99(16), 167601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.167601
47.
47. R. Pentcheva and W. E. Pickett, Phys. Rev. Lett. 102(10), 107602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.107602
48.
48. Z. S. Popovic, S. Satpathy, and R. M. Martin, Phys. Rev. Lett. 101(25), 256801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.256801
49.
49. S. Y. Park and A. J. Millis, Phys. Rev. B 87(20), 205145 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.205145
50.
50. M. S. Park, S. H. Rhim, and A. J. Freeman, Phys. Rev. B 74(20), 205416 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.205416
51.
51. S. Okamoto, A. J. Millis, and N. A. Spaldin, Phys. Rev. Lett. 97(5), 056802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.056802
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4831855
Loading
/content/aip/journal/aplmater/1/5/10.1063/1.4831855
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4831855
2013-11-19
2014-09-21

Abstract

The interface between LaAlO and TiO-terminated SrTiO can be switched between metastable conductive and insulating states using a conductive atomic force microscope probe. Determination of the nanoscale dimensions has previously required a destructive readout (e.g., local restoration of an insulating state). Here it is shown that high-resolution non-destructive imaging of conductive nanostructures can be achieved using a specific piezoresponse force microscopy (PFM) technique. Images of conductive and insulating nanoscale features are achieved with feature sizes as small as 30 nm. The measured nanowire width from PFM is well correlated with those obtained from nanowire erasure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4831855.html;jsessionid=1u3418plavs6k.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4831855&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Direct imaging of LaAlO3/SrTiO3 nanostructures using piezoresponse force microscopy
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4831855
10.1063/1.4831855
SEARCH_EXPAND_ITEM