1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Tuning cationic composition of La:EuTiO3−δ films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/5/10.1063/1.4831856
1.
1. K. S. Takahashi, M. Onoda, M. Kawasaki, N. Nagaosa, and Y. Tokura, Phys. Rev. Lett. 103, 057204 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.057204
2.
2. L. Sagarna, A. Shkabko, S. Populoh, L. Karvonen, and A. Weidenkaff, Appl. Phys. Lett. 101, 033908 (2012).
http://dx.doi.org/10.1063/1.4737872
3.
3. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Nat. Mater. 6, 129 (2007).
http://dx.doi.org/10.1038/nmat1821
4.
4. A. Fujimori, J. Phys. Chem. Sol. 53, 1595 (1992).
http://dx.doi.org/10.1016/0022-3697(92)90149-8
5.
5. J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N. J. Wright, R. Engel-Herbert, and S. Stemmer, Nat. Mater. 9, 482 (2010).
http://dx.doi.org/10.1038/nmat2750
6.
6. G. Rijnders and D. H. A. Blank, Nat. Mater. 7, 270 (2008).
http://dx.doi.org/10.1038/nmat2145
7.
7. F. Schoofs, T. Fix, A. S. Kalabukhov, D. Winkler, Y. Boikov, I. Serenkov, V. Sakharov, T. Claeson, L. MacManus-Driscoll, and M. G. Blamire, J. Phys.: Condens. Matter 23, 305002 (2011).
http://dx.doi.org/10.1088/0953-8984/23/30/305002
8.
8. D. J. Keeble, S. Wicklein, R. Dittmann, L. Ravelli, R. A. Mackie, and W. Egger, Phys. Rev. Lett. 105, 226102 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.226102
9.
9. C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 97, 267602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.267602
10.
10. J. W. Kim, P. Thompson, S. Brown, P. S. Normile, J. A. Schlueter, A. Shkabko, A. Weidenkaff, and P. J. Ryan, Phys. Rev. Lett. 110, 027201 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.027201
11.
11. A. P. Petrovic, Y. Kato, S. S. Sunku, T. Ito, P. Sengupta, L. Spalek, M. Shimuta, T. Katsufuji, C. D. Batista, S. S. Saxena, and C. Panagopoulos, Phys. Rev. B: Condens. Matter 87, 064103 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.064103
12.
12. J. Cao and J. Wu, Mater. Sci. Eng. R 71, 35 (2011).
http://dx.doi.org/10.1016/j.mser.2010.08.001
13.
13. J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J. W. Kim, P. J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D. G. Schlom, Nature (London) 466, 954 (2010).
http://dx.doi.org/10.1038/nature09331
14.
14. K. Tanaka, K. Fujita, Y. Maruyama, Y. Kususe, H. Murakami, H. Akamatsu, Y. Zong, and S. Murai, J. Mater. Res. 28, 1031 (2013).
http://dx.doi.org/10.1557/jmr.2013.60
15.
15. A. N. Morozovska, M. D. Glinchuk, R. K. Behera, B. Zaulychny, C. S. Deo, and E. A. Eliseev, Phys. Rev. B: Condens. Matter 84, 205403 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.205403
16.
16. R. Ranjan, H. S. Nabi, and R. Pentcheva, J. Appl. Phys. 105, 053905 (2009).
http://dx.doi.org/10.1063/1.3079791
17.
17. S. A. Chambers, Surf. Sci. 605, 1133 (2011).
http://dx.doi.org/10.1016/j.susc.2011.04.011
18.
18. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).
http://dx.doi.org/10.1063/1.1847723
19.
19. T. Ohnishi, K. Takahashi, M. Nakamura, M. Kawasaki, M. Yoshimoto, and H. Koinuma, Appl. Phys. Lett. 74, 2531 (1999).
http://dx.doi.org/10.1063/1.123888
20.
20. P. Brinks, W. Siemons, J. E. Kleibeuker, G. Koster, G. Rijnders, and M. Huijben, Appl. Phys. Lett. 98, 242904 (2011).
http://dx.doi.org/10.1063/1.3600339
21.
21. B. Jalan, R. Engel-Herbert, N. J. Wright, and S. Stemmer, J. Vac. Sci. Technol. A 27, 461 (2009).
http://dx.doi.org/10.1116/1.3106610
22.
22. S. Wicklein, A. Sambri, S. Amoruso, X. Wang, R. Bruzzese, A. Koehl, and R. Dittmann, Appl. Phys. Lett. 101, 131601 (2012).
http://dx.doi.org/10.1063/1.4754112
23.
23. C. Caspers, M. Mueller, A. X. Gray, A. M. Kaiser, A. Gloskovskii, C. S. Fadley, W. Drube, and C. M. Schneider, Phys. Status Solidi (RRL) 5, 441 (2011).
http://dx.doi.org/10.1002/pssr.201105403
24.
24. C. Gerth, A. Kochur, M. Groen, T. Luhmann, M. Richter, and P. Zimmermann, Phys. Rev. A: At. Mol. Opt. Phys. 57, 3523 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.3523
25.
25. W. Schneider, C. Laubschat, I. Nowik, and G. Kaindl, Phys. Rev. B 24, 5422 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.5422
26.
26. D. J. Keeble, S. Wicklein, L. Jin, C. L. Jia, W. Egger, and R. Dittmann, Phys. Rev. B: Condens. Matter 87, 195409 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.195409
27.
27. A. H. G. Princen, Master thesis, University of Twente, 2007.
28.
28. H. Kiessig, Ann. Phys. (Berlin) 402, 769 (1931).
http://dx.doi.org/10.1002/andp.19314020702
29.
29. T. Ohnishi, M. Lippmaa, T. Yamamoto, S. Meguro, and H. Koinuma, Appl. Phys. Lett. 87, 241919 (2005).
http://dx.doi.org/10.1063/1.2146069
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4831856
Loading
/content/aip/journal/aplmater/1/5/10.1063/1.4831856
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/5/10.1063/1.4831856
2013-11-26
2014-08-29

Abstract

EuLaTiO (x = 0, 0.3, 0.5) films were deposited in a p(Ar(96%)/H(4%)) = 4 × 10−4 mbar atmosphere on (LaAlO)-(SrAlTaO) vicinal substrates (0.1°). Reflection high-energy electron diffraction oscillation characteristics of a layer-by-layer growth mode were observed for stoichiometric and Ti-rich films and the laser fluence suited to deposit stoichiometric films was identified to be 1.25 J/cm2 independent of the La content. The variety of resulting film compositions follows the general trend of Eu-enrichment for low laser and Ti-enrichment for high laser fluence. X-ray diffraction confirms that all the films are compressively strained with a general trend of an increase of c-axis elongation for non-stoichiometric films. The surfaces of non-stoichiometric films have an increased roughness, the highest sheet resistances, exhibit the presence of islands, and are Eu3+ rich for films deposited at low laser fluence.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/5/1.4831856.html;jsessionid=1gd5pejubdg6u.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/5/10.1063/1.4831856&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tuning cationic composition of La:EuTiO3−δ films
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/5/10.1063/1.4831856
10.1063/1.4831856
SEARCH_EXPAND_ITEM