Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Takahashi, M. Onoda, M. Kawasaki, N. Nagaosa, and Y. Tokura, Phys. Rev. Lett. 103, 057204 (2009).
2. L. Sagarna, A. Shkabko, S. Populoh, L. Karvonen, and A. Weidenkaff, Appl. Phys. Lett. 101, 033908 (2012).
3. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, Nat. Mater. 6, 129 (2007).
4. A. Fujimori, J. Phys. Chem. Sol. 53, 1595 (1992).
5. J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N. J. Wright, R. Engel-Herbert, and S. Stemmer, Nat. Mater. 9, 482 (2010).
6. G. Rijnders and D. H. A. Blank, Nat. Mater. 7, 270 (2008).
7. F. Schoofs, T. Fix, A. S. Kalabukhov, D. Winkler, Y. Boikov, I. Serenkov, V. Sakharov, T. Claeson, L. MacManus-Driscoll, and M. G. Blamire, J. Phys.: Condens. Matter 23, 305002 (2011).
8. D. J. Keeble, S. Wicklein, R. Dittmann, L. Ravelli, R. A. Mackie, and W. Egger, Phys. Rev. Lett. 105, 226102 (2010).
9. C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 97, 267602 (2006).
10. J. W. Kim, P. Thompson, S. Brown, P. S. Normile, J. A. Schlueter, A. Shkabko, A. Weidenkaff, and P. J. Ryan, Phys. Rev. Lett. 110, 027201 (2013).
11. A. P. Petrovic, Y. Kato, S. S. Sunku, T. Ito, P. Sengupta, L. Spalek, M. Shimuta, T. Katsufuji, C. D. Batista, S. S. Saxena, and C. Panagopoulos, Phys. Rev. B: Condens. Matter 87, 064103 (2013).
12. J. Cao and J. Wu, Mater. Sci. Eng. R 71, 35 (2011).
13. J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J. W. Kim, P. J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D. G. Schlom, Nature (London) 466, 954 (2010).
14. K. Tanaka, K. Fujita, Y. Maruyama, Y. Kususe, H. Murakami, H. Akamatsu, Y. Zong, and S. Murai, J. Mater. Res. 28, 1031 (2013).
15. A. N. Morozovska, M. D. Glinchuk, R. K. Behera, B. Zaulychny, C. S. Deo, and E. A. Eliseev, Phys. Rev. B: Condens. Matter 84, 205403 (2011).
16. R. Ranjan, H. S. Nabi, and R. Pentcheva, J. Appl. Phys. 105, 053905 (2009).
17. S. A. Chambers, Surf. Sci. 605, 1133 (2011).
18. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).
19. T. Ohnishi, K. Takahashi, M. Nakamura, M. Kawasaki, M. Yoshimoto, and H. Koinuma, Appl. Phys. Lett. 74, 2531 (1999).
20. P. Brinks, W. Siemons, J. E. Kleibeuker, G. Koster, G. Rijnders, and M. Huijben, Appl. Phys. Lett. 98, 242904 (2011).
21. B. Jalan, R. Engel-Herbert, N. J. Wright, and S. Stemmer, J. Vac. Sci. Technol. A 27, 461 (2009).
22. S. Wicklein, A. Sambri, S. Amoruso, X. Wang, R. Bruzzese, A. Koehl, and R. Dittmann, Appl. Phys. Lett. 101, 131601 (2012).
23. C. Caspers, M. Mueller, A. X. Gray, A. M. Kaiser, A. Gloskovskii, C. S. Fadley, W. Drube, and C. M. Schneider, Phys. Status Solidi (RRL) 5, 441 (2011).
24. C. Gerth, A. Kochur, M. Groen, T. Luhmann, M. Richter, and P. Zimmermann, Phys. Rev. A: At. Mol. Opt. Phys. 57, 3523 (1998).
25. W. Schneider, C. Laubschat, I. Nowik, and G. Kaindl, Phys. Rev. B 24, 5422 (1981).
26. D. J. Keeble, S. Wicklein, L. Jin, C. L. Jia, W. Egger, and R. Dittmann, Phys. Rev. B: Condens. Matter 87, 195409 (2013).
27. A. H. G. Princen, Master thesis, University of Twente, 2007.
28. H. Kiessig, Ann. Phys. (Berlin) 402, 769 (1931).
29. T. Ohnishi, M. Lippmaa, T. Yamamoto, S. Meguro, and H. Koinuma, Appl. Phys. Lett. 87, 241919 (2005).

Data & Media loading...


Article metrics loading...



EuLaTiO (x = 0, 0.3, 0.5) films were deposited in a p(Ar(96%)/H(4%)) = 4 × 10−4 mbar atmosphere on (LaAlO)-(SrAlTaO) vicinal substrates (0.1°). Reflection high-energy electron diffraction oscillation characteristics of a layer-by-layer growth mode were observed for stoichiometric and Ti-rich films and the laser fluence suited to deposit stoichiometric films was identified to be 1.25 J/cm2 independent of the La content. The variety of resulting film compositions follows the general trend of Eu-enrichment for low laser and Ti-enrichment for high laser fluence. X-ray diffraction confirms that all the films are compressively strained with a general trend of an increase of c-axis elongation for non-stoichiometric films. The surfaces of non-stoichiometric films have an increased roughness, the highest sheet resistances, exhibit the presence of islands, and are Eu3+ rich for films deposited at low laser fluence.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd