Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. C. Lee, P. Zhou, and J. Yang, IEEE MICRO 30, 131141 (2010).
2. D. Ielmini and A. L. Lacaita, Mater. Today 14, 600607 (2011).
3. G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, J. Vac. Sci. Technol. B 28, 223262 (2010).
4. A. L. Lacaita and A. Redaelli, Microelectron. Eng. 109, 351356 (2013).
5. M. Wuttig and N. Yamada, Nature Mater. 6, 82432 (2007).
6. Y. Saito, Y. Sutou, and J. Koike, Appl. Phys. Lett. 102, 051910 (2013).
7. W. K. Njoroge and M. Wuttig, J. Appl. Phys. 90, 3816 (2001).
8. R. Detemple, D. Wamwangi, M. Wuttig, and G. Bihlmayer, Appl. Phys. Lett. 83, 2572 (2003).
9. C.-F. Chen, A. Schrott, M. H. Lee, S. Raoux, Y. H. Shih, M. Breitwisch, F. H. Baumann, E. K. Lai, T. M. Shaw, P. Flaitz, R. Cheek, E. A. Joseph, S. H. Chen, B. Rajendran, H. L. Lung, and C. Lam, in Proceedings of the International Memory Workshop, Monterey, CA, USA, 10–14 May 2009 (IEEE, 2009).
10. J. M. Skelton, K. Kobayashi, Y. Sutou, and S. R. Elliott, Appl. Phys. Lett. 102, 224105 (2013).
11. X. T. Fu, W. D. Song, H. W. Ho, R. Ji, L. Wang, and M. H. Hong, Appl. Phys. Lett. 100, 201906 (2012).
12. S. Raoux, C. Cabral, L. Krusin-Elbaum, J. L. Jordan-Sweet, K. Virwani, M. Hitzbleck, M. Salinga, A. Madan, and T. L. Pinto, J. Appl. Phys. 105, 064918 (2009).
13. M. Putero, M.-V. Coulet, T. Ouled-Khachroum, C. Muller, C. Baehtz, and S. Raoux, “Phase transition in stoichiometric GaSb thin films: anomalous density change and phase segregation,” Appl. Phys. Lett. (to be published).
14. M. Putero, B. Duployer, I. Blum, T. Ouled-Khachroum, M.-V. Coulet, C. Perrin, E. Ziegler, C. Muller, and D. Mangelinck, Thin Solid Films 541, 2127 (2013).
15. M. Putero, L. Ehouarne, E. Ziegler, and D. Mangelinck, Scr. Mater. 63, 2427 (2010).
16. Y. Lu, S. Song, Z. Song, and B. Liu, J. Appl. Phys. 109, 064503 (2011).
17. S. Raoux, A. K. König, H.-Y. Cheng, D. Garbin, R. W. Cheek, J. L. Jordan-Sweet, and M. Wuttig, Phys. Status Solidi 249, 19992004 (2012).
18. S. Raoux, H.-Y. Cheng, B. Muñoz, and J. L. Jordan-Sweet, in Proceedings of the European Phase Change and Ovonic Science Symposium, Aachen, Germany, September 2009, see
19. L. Krusin-Elbaum, D. Shakhvorostov, C. Cabral, S. Raoux, and J. L. Jordan-Sweet, Appl. Phys. Lett. 96, 121906 (2010).
20. E. Gourvest, S. Lhostis, J. Kreisel, M. Armand, S. Maitrejean, A. Roule, and C. Vallée, Appl. Phys. Lett. 95, 031908 (2009).

Data & Media loading...


Article metrics loading...



Combined X-ray scattering techniques using synchrotron radiation were applied to investigate the crystallization behavior of Sb-rich Ga-Sb alloys. Measurements of the sheet resistance during heating indicated a reduced crystallization temperature with increased Sb content, which was confirmed by X-ray diffraction. The electrical contrast increased with increasing Sb content and the resistivities in both the amorphous and crystalline phases decreased. It was found that by tuning the composition between Ga:Sb = 9:91 (in at.%) and Ga:Sb = 45:55, the change in mass density upon crystallization changes from an increase in mass density which is typical for most phase change materials to a decrease in mass density. At the composition of Ga:Sb = 30:70, no mass density change is observed which should be very beneficial for phase change random access memory (PCRAM) applications where a change in mass density during cycling is assumed to cause void formation and PCRAM device failure.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd