1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Correlated evolution of colossal thermoelectric effect and Kondo insulating behavior
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/6/10.1063/1.4833055
1.
1. G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nature Mater. 7, 105114 (2008).
http://dx.doi.org/10.1038/nmat2090
2.
2. F. J. DiSalvo, “Thermoelectric cooling and power generation,” Science 285, 703706 (1999).
http://dx.doi.org/10.1126/science.285.5428.703
3.
3. L. E. Bell, “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science 321, 14571461 (2008).
http://dx.doi.org/10.1126/science.1158899
4.
4. H. Zhao et al., “Dramatic thermal conductivity reduction by nanostructures for large increase in thermoelectric figure-of-merit of FeSb2,” Appl. Phys. Lett. 99, 163101 (2011).
http://dx.doi.org/10.1063/1.3651757
5.
5. K. Wang, R. Hu, J. Warren, and C. Petrovic, “Enhancement of the thermoelectric properties in doped FeSb2 bulk crystals,” J. Appl. Phys. 112, 013703 (2012).
http://dx.doi.org/10.1063/1.4731251
6.
6. M. Koirala et al., “Thermoelectric property enhancement by Cu nanoparticles in nanostructured FeSb2,” Appl. Phys. Lett. 102, 213111 (2013).
http://dx.doi.org/10.1063/1.4808094
7.
7. A. Bentien, G. K. H. Madsen, S. Johnsen, and B. B. Iversen, “Experimental and theoretical investigations of strongly correlated FeSb2−xSnx,” Phys. Rev. B 74, 205105 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.205105
8.
8. A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen, and F. Steglich, “Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2,” EPL 80, 17008 (2007).
http://dx.doi.org/10.1209/0295-5075/80/17008
9.
9. P. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, and F. Steglich, “FeSb2: Prototype of huge electron-diffusion thermoelectricity,” Phys. Rev. B 79, 153308 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.153308
10.
10. P. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, and F. Steglich, “Huge thermoelectric power factor: FeSb2 versus FeAs2 and RuSb2,” Appl. Phys. Express 2, 091102 (2009).
http://dx.doi.org/10.1143/APEX.2.091102
11.
11. W. M. Yim and F. D. Rosi, “Compound tellurides and their alloys for peltier cooling—A review,” Solid-State Electron. 15, 11211140 (1972).
http://dx.doi.org/10.1016/0038-1101(72)90172-4
12.
12. J. Kondo, “Giant thermo-electric power of dilute magnetic alloys,” Prog. Theor. Phys. 34, 372382 (1965).
http://dx.doi.org/10.1143/PTP.34.372
13.
13. J. P. Heremans et al., “Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states,” Science 321, 554557 (2008).
http://dx.doi.org/10.1126/science.1159725
14.
14. J. P. Heremans, B. Wiendlocha, and A. M. Chamoire, “Resonant levels in bulk thermoelectric semiconductors,” Energy Environ. Sci. 5, 55105530 (2012).
http://dx.doi.org/10.1039/c1ee02612g
15.
15. Y. Pei et al., “Convergence of electronic bands for high performance bulk thermoelectrics,” Nature (London) 473, 6669 (2011).
http://dx.doi.org/10.1038/nature09996
16.
16. G. D. Mahan and J. O. Sofo, “The best thermoelectric,” Proc. Natl. Acad. Sci. U.S.A. 93, 74367439 (1996).
http://dx.doi.org/10.1073/pnas.93.15.7436
17.
17. G. Aeppli, “Kondo insulators,” Comments Condens. Matter Phys. 16, 155165 (1992).
18.
18. R. Wolfe, J. H. Wernick, and S. E. Haszko, “Thermoelectric properties of FeSi,” Phys. Lett. 19, 449450 (1965).
http://dx.doi.org/10.1016/0031-9163(65)90094-6
19.
19. J. M. Tomczak, K. Haule, and G. Kotliar, “Signatures of electronic correlations in iron silicide,” Proc. Natl. Acad. Sci. U.S.A. 109, 32433246 (2012).
http://dx.doi.org/10.1073/pnas.1118371109
20.
20. C. D. W. Jones, K. A. Regan, and F. J. DiSalvo, “Thermoelectric properties of the doped Kondo insulator: NdxCe3-xPt3Sb4,” Phys. Rev. B 58, 16057 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.16057
21.
21. H. Sato et al., “Anomalous transport properties of RFe4P12 (R = La, Ce, Pr, and Nd),” Phys. Rev. B 62, 15125 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.15125
22.
22. P. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, and F. Steglich, “Narrow band gap and enhanced thermoelectricity in FeSb2,” Dalton Trans. 39, 10121019 (2010).
http://dx.doi.org/10.1039/b918909b
23.
23. C. Petrovic et al., “Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb2,” Phys. Rev. B 67, 155205 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.155205
24.
24. C. Petrovic et al., “Kondo insulator description of spin state transition in FeSb2,” Phys. Rev. B 72, 045103 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.045103
25.
25. A. Herzog et al., “Strong electron correlations in FeSb2: An optical investigation and comparison with RuSb2,” Phys. Rev. B 82, 245205 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245205
26.
26. M. Kargarian and G. A. Fiete, “Multi-orbital effects on thermoelectric properties of strongly correlated materials,” preprint http://arxiv.org/abs/1308.2582 (2013).
27.
27. J. M. Tomczak, K. Haule, T. Miyake, A. Georges, and G. Kotliar, “Thermopower of correlated semiconductors: Application to FeAs2 and FeSb2,” Phys. Rev. B 82, 085104 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085104
28.
28. H. Takahashi, Y. Yasui, I. Terasaki, and M. Sato, “Effects of ppm-level imperfection on the transport properties of FeSb2 single crystals,” J. Phys. Soc. Jpn. 80, 054708 (2011).
http://dx.doi.org/10.1143/JPSJ.80.054708
29.
29. M. Pokharel et al., “Phonon drag effect in nanocomposite FeSb2,” MRS Communications 3, 3136 (2013).
http://dx.doi.org/10.1557/mrc.2013.7
30.
30. J. Janaki et al., “Influence of Ni doping on the electrical and structural properties of FeSb2,” Phys. Status Solidi B 249, 17561760 (2012).
http://dx.doi.org/10.1002/pssb.201248049
31.
31.See supplementary materials at http://dx.doi.org/10.1063/1.4833055 for a two-dimensional graph that shows in more detail each individual S vs. T data set shown in Fig. 1(a). [Supplementary Material]
32.
32. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks Cole, 1976).
33.
33. R. Hu, V. F. Mitrović, and C. Petrovic, “Anisotropy in the magnetic and transport properties of Fe1-xCoxSb2,” Phys. Rev. B 74, 195130 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.195130
34.
34. R. Hu, V. F. Mitrović, and C. Petrovic, “Anisotropy in the magnetic and electrical transport properties of Fe1-xCrxSb2,” Phys. Rev. B 76, 115105 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.115105
35.
35. N. Haldolaarachchige et al., “Thermoelectric properties of intermetallic semiconducting RuIn3 and metallic IrIn3,” J. Appl. Phys. 113, 083709 (2013).
http://dx.doi.org/10.1063/1.4793493
36.
36. T. Caillat, A. Borshchevsky, and J. P. Fleurial, “Investigations of several new advanced thermoelectric materials at the jet propulsion laboratory,” Atlanta, Report, 1993, see http://trs-new.jpl.nasa.gov/dspace/handle/2014/35326.
37.
37. F. Hulliger, “Crystal structure and electrical properties of some cobalt-group chalcogenides,” Nature (London) 204, 644646 (1964).
http://dx.doi.org/10.1038/204644a0
38.
38. F. Hulliger and E. Mooser, “Semiconductivity in pyrite, marcasite and arsenopyrite phases,” J. Phys. Chem. Solids 26, 429433 (1965).
http://dx.doi.org/10.1016/0022-3697(65)90173-3
39.
39. D. Mandrus, V. Keppens, B. C. Sales, and J. L. Sarrao, “Unusual transport and large diamagnetism in the intermetallic semiconductor RuAl2,” Phys. Rev. B 58, 37123716 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.3712
40.
40. S. Takahashi, H. Muta, K. Kurosaki, and S. Yamanaka, “Synthesis and thermoelectric properties of silicon-and manganese-doped Ru1-xFexAl2,” J. Alloys Compd. 493, 1721 (2010).
http://dx.doi.org/10.1016/j.jallcom.2009.12.048
41.
41. A. Mani et al., “Evolution of the Kondo insulating gap in Fe1-xRuxSi,” Phys. Rev. B 65, 245206 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.245206
42.
42. P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, “Full-potential, linearized augmented plane wave programs for crystalline systems,” Comput. Phys. Commun. 59, 399415 (1990).
http://dx.doi.org/10.1016/0010-4655(90)90187-6
43.
43. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4833055
Loading
/content/aip/journal/aplmater/1/6/10.1063/1.4833055
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/6/10.1063/1.4833055
2013-12-02
2014-10-24

Abstract

We report the magnetic and transport properties of the RuFeSb solid solution, showing how the colossal thermoelectric performance of FeSb evolves due to changes in the amount of 3 vs. 4 electron character. The physical property trends shed light on the physical picture underlying one of the best low- thermoelectric power factors known to date. Some of the compositions warrant further study as possible - and -type thermoelements for Peltier cooling well below 300 K. Our findings enable us to suggest possible new Kondo insulating systems that might behave similarly to FeSb as advanced thermoelectrics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/6/1.4833055.html;jsessionid=2ve5ng6bv5jjf.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/6/10.1063/1.4833055&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Correlated evolution of colossal thermoelectric effect and Kondo insulating behavior
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4833055
10.1063/1.4833055
SEARCH_EXPAND_ITEM