Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nature Mater. 7, 105114 (2008).
2. F. J. DiSalvo, “Thermoelectric cooling and power generation,” Science 285, 703706 (1999).
3. L. E. Bell, “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science 321, 14571461 (2008).
4. H. Zhao et al., “Dramatic thermal conductivity reduction by nanostructures for large increase in thermoelectric figure-of-merit of FeSb2,” Appl. Phys. Lett. 99, 163101 (2011).
5. K. Wang, R. Hu, J. Warren, and C. Petrovic, “Enhancement of the thermoelectric properties in doped FeSb2 bulk crystals,” J. Appl. Phys. 112, 013703 (2012).
6. M. Koirala et al., “Thermoelectric property enhancement by Cu nanoparticles in nanostructured FeSb2,” Appl. Phys. Lett. 102, 213111 (2013).
7. A. Bentien, G. K. H. Madsen, S. Johnsen, and B. B. Iversen, “Experimental and theoretical investigations of strongly correlated FeSb2−xSnx,” Phys. Rev. B 74, 205105 (2006).
8. A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen, and F. Steglich, “Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2,” EPL 80, 17008 (2007).
9. P. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, and F. Steglich, “FeSb2: Prototype of huge electron-diffusion thermoelectricity,” Phys. Rev. B 79, 153308 (2009).
10. P. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, and F. Steglich, “Huge thermoelectric power factor: FeSb2 versus FeAs2 and RuSb2,” Appl. Phys. Express 2, 091102 (2009).
11. W. M. Yim and F. D. Rosi, “Compound tellurides and their alloys for peltier cooling—A review,” Solid-State Electron. 15, 11211140 (1972).
12. J. Kondo, “Giant thermo-electric power of dilute magnetic alloys,” Prog. Theor. Phys. 34, 372382 (1965).
13. J. P. Heremans et al., “Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states,” Science 321, 554557 (2008).
14. J. P. Heremans, B. Wiendlocha, and A. M. Chamoire, “Resonant levels in bulk thermoelectric semiconductors,” Energy Environ. Sci. 5, 55105530 (2012).
15. Y. Pei et al., “Convergence of electronic bands for high performance bulk thermoelectrics,” Nature (London) 473, 6669 (2011).
16. G. D. Mahan and J. O. Sofo, “The best thermoelectric,” Proc. Natl. Acad. Sci. U.S.A. 93, 74367439 (1996).
17. G. Aeppli, “Kondo insulators,” Comments Condens. Matter Phys. 16, 155165 (1992).
18. R. Wolfe, J. H. Wernick, and S. E. Haszko, “Thermoelectric properties of FeSi,” Phys. Lett. 19, 449450 (1965).
19. J. M. Tomczak, K. Haule, and G. Kotliar, “Signatures of electronic correlations in iron silicide,” Proc. Natl. Acad. Sci. U.S.A. 109, 32433246 (2012).
20. C. D. W. Jones, K. A. Regan, and F. J. DiSalvo, “Thermoelectric properties of the doped Kondo insulator: NdxCe3-xPt3Sb4,” Phys. Rev. B 58, 16057 (1998).
21. H. Sato et al., “Anomalous transport properties of RFe4P12 (R = La, Ce, Pr, and Nd),” Phys. Rev. B 62, 15125 (2000).
22. P. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, and F. Steglich, “Narrow band gap and enhanced thermoelectricity in FeSb2,” Dalton Trans. 39, 10121019 (2010).
23. C. Petrovic et al., “Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb2,” Phys. Rev. B 67, 155205 (2003).
24. C. Petrovic et al., “Kondo insulator description of spin state transition in FeSb2,” Phys. Rev. B 72, 045103 (2005).
25. A. Herzog et al., “Strong electron correlations in FeSb2: An optical investigation and comparison with RuSb2,” Phys. Rev. B 82, 245205 (2010).
26. M. Kargarian and G. A. Fiete, “Multi-orbital effects on thermoelectric properties of strongly correlated materials,” preprint (2013).
27. J. M. Tomczak, K. Haule, T. Miyake, A. Georges, and G. Kotliar, “Thermopower of correlated semiconductors: Application to FeAs2 and FeSb2,” Phys. Rev. B 82, 085104 (2010).
28. H. Takahashi, Y. Yasui, I. Terasaki, and M. Sato, “Effects of ppm-level imperfection on the transport properties of FeSb2 single crystals,” J. Phys. Soc. Jpn. 80, 054708 (2011).
29. M. Pokharel et al., “Phonon drag effect in nanocomposite FeSb2,” MRS Communications 3, 3136 (2013).
30. J. Janaki et al., “Influence of Ni doping on the electrical and structural properties of FeSb2,” Phys. Status Solidi B 249, 17561760 (2012).
31.See supplementary materials at for a two-dimensional graph that shows in more detail each individual S vs. T data set shown in Fig. 1(a). [Supplementary Material]
32. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks Cole, 1976).
33. R. Hu, V. F. Mitrović, and C. Petrovic, “Anisotropy in the magnetic and transport properties of Fe1-xCoxSb2,” Phys. Rev. B 74, 195130 (2006).
34. R. Hu, V. F. Mitrović, and C. Petrovic, “Anisotropy in the magnetic and electrical transport properties of Fe1-xCrxSb2,” Phys. Rev. B 76, 115105 (2007).
35. N. Haldolaarachchige et al., “Thermoelectric properties of intermetallic semiconducting RuIn3 and metallic IrIn3,” J. Appl. Phys. 113, 083709 (2013).
36. T. Caillat, A. Borshchevsky, and J. P. Fleurial, “Investigations of several new advanced thermoelectric materials at the jet propulsion laboratory,” Atlanta, Report, 1993, see
37. F. Hulliger, “Crystal structure and electrical properties of some cobalt-group chalcogenides,” Nature (London) 204, 644646 (1964).
38. F. Hulliger and E. Mooser, “Semiconductivity in pyrite, marcasite and arsenopyrite phases,” J. Phys. Chem. Solids 26, 429433 (1965).
39. D. Mandrus, V. Keppens, B. C. Sales, and J. L. Sarrao, “Unusual transport and large diamagnetism in the intermetallic semiconductor RuAl2,” Phys. Rev. B 58, 37123716 (1998).
40. S. Takahashi, H. Muta, K. Kurosaki, and S. Yamanaka, “Synthesis and thermoelectric properties of silicon-and manganese-doped Ru1-xFexAl2,” J. Alloys Compd. 493, 1721 (2010).
41. A. Mani et al., “Evolution of the Kondo insulating gap in Fe1-xRuxSi,” Phys. Rev. B 65, 245206 (2002).
42. P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, “Full-potential, linearized augmented plane wave programs for crystalline systems,” Comput. Phys. Commun. 59, 399415 (1990).
43. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).

Data & Media loading...


Article metrics loading...



We report the magnetic and transport properties of the RuFeSb solid solution, showing how the colossal thermoelectric performance of FeSb evolves due to changes in the amount of 3 vs. 4 electron character. The physical property trends shed light on the physical picture underlying one of the best low- thermoelectric power factors known to date. Some of the compositions warrant further study as possible - and -type thermoelements for Peltier cooling well below 300 K. Our findings enable us to suggest possible new Kondo insulating systems that might behave similarly to FeSb as advanced thermoelectrics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd