1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Research Update: Doping ZnO and TiO2 for solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/6/10.1063/1.4833475
1.
1. M. Graetzel, R. A. J. Janssen, D. B. Mitzi, and E. H. Sargent, Nature (London) 488, 304 (2012).
http://dx.doi.org/10.1038/nature11476
2.
2. A. J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, J. Mater. Chem. 22, 2351 (2012).
http://dx.doi.org/10.1039/c1jm14829j
3.
3. Y. S. Lee, J. Heo, S. C. Siah, J. P. Mailoa, R. E. Brandt, S. B. Kim, R. G. Gordon, and T. Buonassisi, Energy Environ. Sci. 6, 2112 (2013).
http://dx.doi.org/10.1039/c3ee24461j
4.
4. M. Grätzel, Nature (London) 414, 338 (2001).
http://dx.doi.org/10.1038/35104607
5.
5. A. Gadisa, Y. Liu, E. T. Samulski, and R. Lopez, Appl. Phys. Lett. 100, 253903 (2012).
http://dx.doi.org/10.1063/1.4729861
6.
6. H. Tian, L. Hu, C. Zhang, S. Chen, J. Sheng, L. Mo, W. Liu, and S. Dai, J. Mater. Chem. 21, 863 (2011).
http://dx.doi.org/10.1039/c0jm02941f
7.
7. X. Lan, J. Bai, S. Masala, S. M. Thon, Y. Ren, I. J. Kramer, S. Hoogland, A. Simchi, G. I. Koleilat, D. Paz-Soldan, Z. Ning, A. J. Labelle, J. Y. Kim, G. Jabbour, and E. H. Sargent, Adv. Mater. 25, 1769 (2013).
http://dx.doi.org/10.1002/adma.201203759
8.
8. S. K. Kim, W.-D. Kim, K.-M. Kim, C. S. Hwang, and J. Jeong, Appl. Phys. Lett. 85, 4112 (2004).
http://dx.doi.org/10.1063/1.1812832
9.
9. Y.-J. Lee, R. J. Davis, M. T. Lloyd, P. P. Provencio, R. P. Prasankumar, and J. W. P. Hsu, IEEE J. Sel. Top. Quantum Electron. 16, 1587 (2010).
http://dx.doi.org/10.1109/JSTQE.2010.2040586
10.
10. K. P. Musselman and L. Schmidt-Mende, Green 1, 7 (2011).
http://dx.doi.org/10.1515/green.2011.007
11.
11. T. Gershon, Mater. Sci. Technol. 27, 1357 (2011).
http://dx.doi.org/10.1179/026708311X13081465539809
12.
12. J. Tang and E. H. Sargent, Adv. Mater. 23, 12 (2011).
http://dx.doi.org/10.1002/adma.201001491
13.
13. L.-N. Bai, J.-S. Lian, and Q. Jiang, Chin. Phys. Lett. 28, 117101 (2011).
http://dx.doi.org/10.1088/0256-307X/28/11/117101
14.
14. B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions (Pergamon Press Ltd., Oxford, UK, 2011).
15.
15. D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, Adv. Funct. Mater. 17, 264 (2007).
http://dx.doi.org/10.1002/adfm.200600215
16.
16. K. Kakiage, T. Tokutome, S. Iwamoto, T. Kyomen, and M. Hanaya, Chem. Commun. 49, 179 (2013).
http://dx.doi.org/10.1039/c2cc36873k
17.
17. X. Zhang, F. Liu, Q. Huang, G. Zhou, and Z. Wang, J. Phys. Chem. C 115, 12665 (2011).
http://dx.doi.org/10.1021/jp201853c
18.
18. Z. Duan, A. Du Pasquier, Y. Lu, Y. Xu, and E. Garfunkel, Sol. Energy Mater. Sol. Cells 96, 292 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.09.047
19.
19. J. Piris, N. Kopidakis, D. C. Olson, S. E. Shaheen, D. S. Ginley, and G. Rumbles, Adv. Funct. Mater. 17, 3849 (2007).
http://dx.doi.org/10.1002/adfm.200700305
20.
20. E. Guziewicz, M. Godlewski, T. Krajewski, Ł. Wachnicki, A. Szczepanik, K. Kopalko, A. Wójcik-Głodowska, E. Przeździecka, W. Paszkowicz, E. Łusakowska, P. Kruszewski, N. Huby, G. Tallarida, and S. Ferrari, J. Appl. Phys. 105, 122413 (2009).
http://dx.doi.org/10.1063/1.3133803
21.
21. P. Poodt, D. C. Cameron, E. Dickey, S. M. George, V. Kuznetsov, G. N. Parsons, F. Roozeboom, G. Sundaram, and A. Vermeer, J. Vac. Sci. Technol. A 30, 010802 (2012).
http://dx.doi.org/10.1116/1.3670745
22.
22. R. L. Z. Hoye, D. Muñoz-Rojas, D. C. Iza, K. P. Musselman, and J. L. MacManus-Driscoll, Sol. Energy Mater. Sol. Cells 116, 197 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.04.020
23.
23. T. Törndahl, C. Platzer-Bjorkman, J. Kessler, and M. Edoff, Prog. Photovoltaics 15, 225 (2007).
http://dx.doi.org/10.1002/pip.733
24.
24. C. Justin Raj, K. Prabakar, S. N. Karthick, K. V. Hemalatha, M.-K. Son, and H.-J. Kim, J. Phys. Chem. C 117, 2600 (2013).
http://dx.doi.org/10.1021/jp308847g
25.
25. S. Iwamoto, Y. Sazanami, M. Inoue, T. Inoue, T. Hoshi, K. Shigaki, M. Kaneko, and A. Maenosono, ChemSusChem 1, 401 (2008).
http://dx.doi.org/10.1002/cssc.200700163
26.
26. H. Liu, J. Tang, I. J. Kramer, R. Debnath, G. I. Koleilat, X. Wang, A. Fisher, R. Li, L. Brzozowski, L. Levina, and E. H. Sargent, Adv. Mater. 23, 3832 (2011).
http://dx.doi.org/10.1002/adma.201101783
27.
27. C. Justin Raj, S. N. Karthick, K. V. Hemalatha, M.-K. Son, H.-J. Kim, and K. Prabakar, J. Sol-Gel Sci. Technol. 62, 453 (2012).
http://dx.doi.org/10.1007/s10971-012-2748-0
28.
28. J. Bisquert, ChemPhysChem 12, 1633 (2011).
http://dx.doi.org/10.1002/cphc.201100248
29.
29. S. Zhang, X. Yang, Y. Numata, and L. Han, Energy Environ. Sci. 6, 1443 (2013).
http://dx.doi.org/10.1039/c3ee24453a
30.
30. T. Ma, M. Akiyama, E. Abe, and I. Imai, Nano Lett. 5, 2543 (2005).
http://dx.doi.org/10.1021/nl051885l
31.
31. Q. Sun, J. Zhang, P. Wang, J. Zheng, X. Zhang, Y. Cui, J. Feng, and Y. Zhu, J. Renewable Sustainable Energy 4, 023104 (2012).
http://dx.doi.org/10.1063/1.3694121
32.
32. C. Kim, K.-S. Kim, H. Y. Kim, and Y. S. Han, J. Mater. Chem. 18, 5809 (2008).
http://dx.doi.org/10.1039/b805091k
33.
33. T. Ikuno, R. Suzuki, K. Kitazumi, N. Takahashi, N. Kato, and K. Higuchi, Appl. Phys. Lett. 102, 193901 (2013).
http://dx.doi.org/10.1063/1.4804603
34.
34. D. Muñoz-Rojas, H. Sun, D. C. Iza, J. Weickert, L. Chen, H. Wang, L. Schmidt-Mende, and J. L. MacManus-Driscoll, Prog. Photovoltaics 21, 393 (2013).
http://dx.doi.org/10.1002/pip.2380
35.
35. B. Ehrler, K. P. Musselman, M. L. Böhm, F. S. F. Morgenstern, Y. Vaynzof, B. J. Walker, J. L. MacManus-Driscoll, and N. C. Greenham, ACS Nano 7, 4210 (2013).
http://dx.doi.org/10.1021/nn400656n
36.
36. R. G. Gordon, AIP Conf. Proc. 394, 39 (1997);
http://dx.doi.org/10.1063/1.52856
36.P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, Dalton Trans. 2995 (2004).
http://dx.doi.org/10.1039/b408864f
37.
37. S.-G. Ihn, K.-S. Shin, M.-J. Jin, X. Bulliard, S. Yun, Y. Suk Choi, Y. Kim, J.-H. Park, M. Sim, M. Kim, K. Cho, T. Sang Kim, D. Choi, J.-Y. Choi, W. Choi, and S.-W. Kim, Sol. Energy Mater. Sol. Cells 95, 1610 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.01.011
38.
38. S.-J. Chang, J.-L. Hou, T.-J. Hsueh, K.-T. Lam, S. Li, and C.-H. Liu, IEEE J. Photovoltaics 3, 991 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2013.2258192
39.
39. Y. Nishi, T. Miyata, and T. Minami, Thin Solid Films 528, 72 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.09.090
40.
40. N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, Chem. Mater. 22, 4769 (2010).
http://dx.doi.org/10.1021/cm101227h
41.
41. D. Kim, I. Yun, and H. Kim, Curr. Appl. Phys. 10, S459 (2010).
http://dx.doi.org/10.1016/j.cap.2010.02.030
42.
42. Y. C. Lin, T. Y. Chen, L. C. Wang, and S. Y. Lien, J. Electrochem. Soc. 159, H599 (2012).
http://dx.doi.org/10.1149/2.108206jes
43.
43. J.-H. Kim, K.-J. Lee, J.-H. Roh, S.-W. Song, J.-H. Park, I.-H. Yer, and B.-M. Moon, J. Korean Phys. Soc. 60, 2025 (2012).
http://dx.doi.org/10.3938/jkps.60.2025
44.
44. H. Kamisaka, N. Mizuguchi, and K. Yamashita, J. Mater. Sci. 47, 7522 (2012).
http://dx.doi.org/10.1007/s10853-012-6491-2
45.
45. J. H. Noh, H. S. Han, S. Lee, D. H. Kim, J. H. Park, S. Park, J. Y. Kim, H. S. Jung, and K. S. Hong, J. Phys. Chem. C 114, 13867 (2010).
http://dx.doi.org/10.1021/jp104247t
46.
46. L. Zhao, X. Zhao, J. Liu, A. Zhang, D. Wang, and B. Wei, J. Sol-Gel Sci. Technol. 53, 475 (2009).
http://dx.doi.org/10.1007/s10971-009-2102-3
47.
47. T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, and C. J. Brabec, Org. Electron. 12, 1539 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.05.027
48.
48. A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, Sol. Energy Mater. Sol. Cells 95, 579 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.09.020
49.
49. J. Chang, Z. Lin, C. Zhu, C. Chi, J. Zhang, and J. Wu, ACS Appl. Mater. Interfaces 5, 6687 (2013).
http://dx.doi.org/10.1021/am4014488
50.
50. T. Minami, MRS Bull. 25, 38 (2000).
http://dx.doi.org/10.1557/mrs2000.149
51.
51. V. Kruefu, E. Peterson, C. Khantha, C. Siriwong, S. Phanichphant, and D. L. Carroll, Appl. Phys. Lett. 97, 053302 (2010).
http://dx.doi.org/10.1063/1.3465866
52.
52. L. Luo, W. Tao, X. Hu, T. Xiao, B. Heng, W. Huang, H. Wang, H. Han, Q. Jiang, J. Wang, and Y. Tang, J. Power Sources 196, 10518 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2011.08.011
53.
53. S. Yang, S. Guo, D. Xu, H. Xue, H. Kou, J. Wang, and G. Zhu, J. Fluorine Chem. 150, 78 (2013).
http://dx.doi.org/10.1016/j.jfluchem.2013.03.012
54.
54. F. Huang, Q. Li, G. J. Thorogood, Y.-B. Cheng, and R. A. Caruso, J. Mater. Chem. 22, 17128 (2012);
http://dx.doi.org/10.1039/c2jm32409a
54.K.-P. Wang, and H. Teng, Phys. Chem. Chem. Phys. 11, 9489 (2009).
http://dx.doi.org/10.1039/b912672d
55.
55. T. Nikolay, L. Larina, O. Shevaleevskiy, and B. T. Ahn, in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2011), p. 748.
http://dx.doi.org/10.1109/PVSC.2011.6186061
56.
56. X. , X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, and S. Huang, Adv. Funct. Mater. 20, 509 (2010).
http://dx.doi.org/10.1002/adfm.200901292
57.
57. M. Lira-Cantu, M. Khoda Siddiki, D. Muñoz-Rojas, R. Amade, and N. I. González-Pech, Sol. Energy Mater. Sol. Cells 94, 1227 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.03.011
58.
58. A. K. K. Kyaw, X. Sun, D. W. Zhao, S. T. Tan, Y. Divayana, and H. V. Demir, IEEE J. Sel. Top. Quantum Electron. 16, 1700 (2010).
http://dx.doi.org/10.1109/JSTQE.2009.2039200
59.
59. J. Liu, H. Yang, W. Tan, X. Zhou, and Y. Lin, Electrochim. Acta 56, 396 (2010).
http://dx.doi.org/10.1016/j.electacta.2010.08.063
60.
60. T. Loewenstein, K. Nonomura, T. Yoshida, E. Michaelis, D. Wöhrle, J. Rathousky, M. Wark, and D. Schlettwein, J. Electrochem. Soc. 153, A699 (2006).
http://dx.doi.org/10.1149/1.2170545
61.
61. H. Yamagata, N. J. Hestand, F. C. Spano, A. Köhler, C. Scharsich, S. T. Hoffmann, and H. Bässler, J. Chem. Phys. 139, 114903 (2013).
http://dx.doi.org/10.1063/1.4819906
62.
62. W. Lin, K. Ding, Z. Lin, J. Zhang, J. Huang, and F. Huang, Cryst. Eng. Comm. 13, 3338 (2011).
http://dx.doi.org/10.1039/c1ce05122a
63.
63. J. Li, N. Lu, X. Quan, S. Chen, and H. Zhao, Ind. Eng. Chem. Res. 47, 3804 (2008).
http://dx.doi.org/10.1021/ie0712028
64.
64. W. Qin, S. Lu, X. Wu, and S. Wang, Int. J. Electrochem. Sci. 8, 7984 (2013).
65.
65. X. Zhang, X. M. Li, T. L. Chen, J. M. Bian, and C. Y. Zhang, Thin Solid Films 492, 248 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.06.088
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4833475
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Band diagrams showing how the tuning of the ZnO/TiO conduction band/Fermi level through doping can influence the built-in potential ( ) of inorganic (a) and (b), organic (c), and dye-sensitized (d) solar cells. The driving forces for electron injection in hybrid and dye-sensitized solar cells are also indicated in (c) and (d), respectively. 14–17

Image of FIG. 2.

Click to view

FIG. 2.

Band alignment of (a) undoped TiO, (b) Zr-doped TiO, and (c) Sb-doped TiO with 1.1 eV PbS quantum dots. Reproduced by permission from H. Liu, J. Tang, I. J. Kramer, R. Debnath, G. I. Koleilat, X. Wang, A. Fisher, R. Li, L. Brzozowski, L. Levina, and E. H. Sargent, Adv. Mater. , 3832 (2011). Copyright 2011 Wiley-VCH.

Image of FIG. 3.

Click to view

FIG. 3.

(a) IPCE (incident photon-to-current efficiency) of DSSCs showing that N719 dye sensitized onto N-doped TiO had improved IPCE compared to undoped TiO (SL-D and P25). Reprinted with permission from T. Ma, M. Akiyama, E. Abe, and I. Imai, Nano Lett. , 2543 (2005). Copyright 2005 American Chemical Society. (b) Schematic showing the cascade of energy levels from the dye LUMO to the conduction bands of the Cr:TiO and undoped TiO. Reproduced by permission from C. Kim, K.-S. Kim, H. Y. Kim, and Y. S. Han, J. Mater. Chem. , 5809 (2008). Copyright 2008 from Royal Society of Chemistry.

Image of FIG. 4.

Click to view

FIG. 4.

Illustration of (a) back recombination via interfacial trap states without a buffer layer and (b) prevention of back recombination by inserting a defect-free buffer layer. 35

Image of FIG. 5.

Click to view

FIG. 5.

Illustration of how doping a semiconductor to increase its carrier concentration can make it degenerate and highly conductive. is the conduction band minimum, the Fermi level, and the valence band maximum. Example doping reactions that would increase the carrier concentration of ZnO or TiO are shown in Kröger Vink notation, where the body denotes the species, subscript the lattice position (e.g., Zn = Zn lattice sites), and superscript the charge (X = no charge overall in the lattice, dot = positive charge, comma = negative charge). In the example reactions, A and B are cations with valencies of three and four, respectively. X is an anion with a valency of one. Since these ions have valencies one more (cations) or less (anion) than the ion they are replacing, they have one extra positive charge compared with the host ions and donate an extra electron to the lattice. 36

Image of FIG. 6.

Click to view

FIG. 6.

Illustration showing (a) BHJ without blocking layers, and (b) BHJ with blocking layers.

Tables

Generic image for table

Click to view

TABLE I.

Comparison of the fabrication methods and performance parameters of the highest efficiency solar cells using doped ZnO/TiO with the equivalent undoped ZnO/TiO. N.B.: FTO is fluorine-doped tin oxide and ITO is indium-doped tin oxide.

Generic image for table

Click to view

TABLE II.

Comparison of the effect of doping of TiO to improve visible light absorption on the performance of DSSCs.

Generic image for table

Click to view

TABLE III.

Comparison of doped ZnO used as buffer layers at the heterointerface to reduce recombination

Generic image for table

Click to view

TABLE IV.

Comparison of the key properties of transparent conducting oxides (TCOs) made from doped ZnO or TiO and the performance of the devices based on these TCOs. N.B.: In this table, all values in the resistivity column are resistivity values, apart from where sheet resistance values are given. N.B.B.: The transmittance values reported pertain to the visible light (400–800 nm) transmittance.

Generic image for table

Click to view

TABLE V.

Comparison of the properties of doped ZnO and TiO used to improve charge extraction in solar cells and the corresponding improvement in device performance.

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/6/10.1063/1.4833475
2013-12-02
2014-04-18

Abstract

ZnO and TiO are two of the most commonly used n-type metal oxide semiconductors in new generation solar cells due to their abundance, low-cost, and stability. ZnO and TiO can be used as active layers, photoanodes, buffer layers, transparent conducting oxides, hole-blocking layers, and intermediate layers. Doping is essential to tailor the materials properties for each application. The dopants used and their impact in solar cells are reviewed. In addition, the advantages, disadvantages, and commercial potential of the various fabrication methods of these oxides are presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/6/1.4833475.html;jsessionid=1blgksk37jho6.x-aip-live-01?itemId=/content/aip/journal/aplmater/1/6/10.1063/1.4833475&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Research Update: Doping ZnO and TiO2 for solar cells
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4833475
10.1063/1.4833475
SEARCH_EXPAND_ITEM