1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Research Update: Doping ZnO and TiO2 for solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/6/10.1063/1.4833475
1.
1. M. Graetzel, R. A. J. Janssen, D. B. Mitzi, and E. H. Sargent, Nature (London) 488, 304 (2012).
http://dx.doi.org/10.1038/nature11476
2.
2. A. J. Moulé, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, J. Mater. Chem. 22, 2351 (2012).
http://dx.doi.org/10.1039/c1jm14829j
3.
3. Y. S. Lee, J. Heo, S. C. Siah, J. P. Mailoa, R. E. Brandt, S. B. Kim, R. G. Gordon, and T. Buonassisi, Energy Environ. Sci. 6, 2112 (2013).
http://dx.doi.org/10.1039/c3ee24461j
4.
4. M. Grätzel, Nature (London) 414, 338 (2001).
http://dx.doi.org/10.1038/35104607
5.
5. A. Gadisa, Y. Liu, E. T. Samulski, and R. Lopez, Appl. Phys. Lett. 100, 253903 (2012).
http://dx.doi.org/10.1063/1.4729861
6.
6. H. Tian, L. Hu, C. Zhang, S. Chen, J. Sheng, L. Mo, W. Liu, and S. Dai, J. Mater. Chem. 21, 863 (2011).
http://dx.doi.org/10.1039/c0jm02941f
7.
7. X. Lan, J. Bai, S. Masala, S. M. Thon, Y. Ren, I. J. Kramer, S. Hoogland, A. Simchi, G. I. Koleilat, D. Paz-Soldan, Z. Ning, A. J. Labelle, J. Y. Kim, G. Jabbour, and E. H. Sargent, Adv. Mater. 25, 1769 (2013).
http://dx.doi.org/10.1002/adma.201203759
8.
8. S. K. Kim, W.-D. Kim, K.-M. Kim, C. S. Hwang, and J. Jeong, Appl. Phys. Lett. 85, 4112 (2004).
http://dx.doi.org/10.1063/1.1812832
9.
9. Y.-J. Lee, R. J. Davis, M. T. Lloyd, P. P. Provencio, R. P. Prasankumar, and J. W. P. Hsu, IEEE J. Sel. Top. Quantum Electron. 16, 1587 (2010).
http://dx.doi.org/10.1109/JSTQE.2010.2040586
10.
10. K. P. Musselman and L. Schmidt-Mende, Green 1, 7 (2011).
http://dx.doi.org/10.1515/green.2011.007
11.
11. T. Gershon, Mater. Sci. Technol. 27, 1357 (2011).
http://dx.doi.org/10.1179/026708311X13081465539809
12.
12. J. Tang and E. H. Sargent, Adv. Mater. 23, 12 (2011).
http://dx.doi.org/10.1002/adma.201001491
13.
13. L.-N. Bai, J.-S. Lian, and Q. Jiang, Chin. Phys. Lett. 28, 117101 (2011).
http://dx.doi.org/10.1088/0256-307X/28/11/117101
14.
14. B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions (Pergamon Press Ltd., Oxford, UK, 2011).
15.
15. D. C. Olson, S. E. Shaheen, M. S. White, W. J. Mitchell, M. F. A. M. van Hest, R. T. Collins, and D. S. Ginley, Adv. Funct. Mater. 17, 264 (2007).
http://dx.doi.org/10.1002/adfm.200600215
16.
16. K. Kakiage, T. Tokutome, S. Iwamoto, T. Kyomen, and M. Hanaya, Chem. Commun. 49, 179 (2013).
http://dx.doi.org/10.1039/c2cc36873k
17.
17. X. Zhang, F. Liu, Q. Huang, G. Zhou, and Z. Wang, J. Phys. Chem. C 115, 12665 (2011).
http://dx.doi.org/10.1021/jp201853c
18.
18. Z. Duan, A. Du Pasquier, Y. Lu, Y. Xu, and E. Garfunkel, Sol. Energy Mater. Sol. Cells 96, 292 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.09.047
19.
19. J. Piris, N. Kopidakis, D. C. Olson, S. E. Shaheen, D. S. Ginley, and G. Rumbles, Adv. Funct. Mater. 17, 3849 (2007).
http://dx.doi.org/10.1002/adfm.200700305
20.
20. E. Guziewicz, M. Godlewski, T. Krajewski, Ł. Wachnicki, A. Szczepanik, K. Kopalko, A. Wójcik-Głodowska, E. Przeździecka, W. Paszkowicz, E. Łusakowska, P. Kruszewski, N. Huby, G. Tallarida, and S. Ferrari, J. Appl. Phys. 105, 122413 (2009).
http://dx.doi.org/10.1063/1.3133803
21.
21. P. Poodt, D. C. Cameron, E. Dickey, S. M. George, V. Kuznetsov, G. N. Parsons, F. Roozeboom, G. Sundaram, and A. Vermeer, J. Vac. Sci. Technol. A 30, 010802 (2012).
http://dx.doi.org/10.1116/1.3670745
22.
22. R. L. Z. Hoye, D. Muñoz-Rojas, D. C. Iza, K. P. Musselman, and J. L. MacManus-Driscoll, Sol. Energy Mater. Sol. Cells 116, 197 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.04.020
23.
23. T. Törndahl, C. Platzer-Bjorkman, J. Kessler, and M. Edoff, Prog. Photovoltaics 15, 225 (2007).
http://dx.doi.org/10.1002/pip.733
24.
24. C. Justin Raj, K. Prabakar, S. N. Karthick, K. V. Hemalatha, M.-K. Son, and H.-J. Kim, J. Phys. Chem. C 117, 2600 (2013).
http://dx.doi.org/10.1021/jp308847g
25.
25. S. Iwamoto, Y. Sazanami, M. Inoue, T. Inoue, T. Hoshi, K. Shigaki, M. Kaneko, and A. Maenosono, ChemSusChem 1, 401 (2008).
http://dx.doi.org/10.1002/cssc.200700163
26.
26. H. Liu, J. Tang, I. J. Kramer, R. Debnath, G. I. Koleilat, X. Wang, A. Fisher, R. Li, L. Brzozowski, L. Levina, and E. H. Sargent, Adv. Mater. 23, 3832 (2011).
http://dx.doi.org/10.1002/adma.201101783
27.
27. C. Justin Raj, S. N. Karthick, K. V. Hemalatha, M.-K. Son, H.-J. Kim, and K. Prabakar, J. Sol-Gel Sci. Technol. 62, 453 (2012).
http://dx.doi.org/10.1007/s10971-012-2748-0
28.
28. J. Bisquert, ChemPhysChem 12, 1633 (2011).
http://dx.doi.org/10.1002/cphc.201100248
29.
29. S. Zhang, X. Yang, Y. Numata, and L. Han, Energy Environ. Sci. 6, 1443 (2013).
http://dx.doi.org/10.1039/c3ee24453a
30.
30. T. Ma, M. Akiyama, E. Abe, and I. Imai, Nano Lett. 5, 2543 (2005).
http://dx.doi.org/10.1021/nl051885l
31.
31. Q. Sun, J. Zhang, P. Wang, J. Zheng, X. Zhang, Y. Cui, J. Feng, and Y. Zhu, J. Renewable Sustainable Energy 4, 023104 (2012).
http://dx.doi.org/10.1063/1.3694121
32.
32. C. Kim, K.-S. Kim, H. Y. Kim, and Y. S. Han, J. Mater. Chem. 18, 5809 (2008).
http://dx.doi.org/10.1039/b805091k
33.
33. T. Ikuno, R. Suzuki, K. Kitazumi, N. Takahashi, N. Kato, and K. Higuchi, Appl. Phys. Lett. 102, 193901 (2013).
http://dx.doi.org/10.1063/1.4804603
34.
34. D. Muñoz-Rojas, H. Sun, D. C. Iza, J. Weickert, L. Chen, H. Wang, L. Schmidt-Mende, and J. L. MacManus-Driscoll, Prog. Photovoltaics 21, 393 (2013).
http://dx.doi.org/10.1002/pip.2380
35.
35. B. Ehrler, K. P. Musselman, M. L. Böhm, F. S. F. Morgenstern, Y. Vaynzof, B. J. Walker, J. L. MacManus-Driscoll, and N. C. Greenham, ACS Nano 7, 4210 (2013).
http://dx.doi.org/10.1021/nn400656n
36.
36. R. G. Gordon, AIP Conf. Proc. 394, 39 (1997);
http://dx.doi.org/10.1063/1.52856
36.P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, Dalton Trans. 2995 (2004).
http://dx.doi.org/10.1039/b408864f
37.
37. S.-G. Ihn, K.-S. Shin, M.-J. Jin, X. Bulliard, S. Yun, Y. Suk Choi, Y. Kim, J.-H. Park, M. Sim, M. Kim, K. Cho, T. Sang Kim, D. Choi, J.-Y. Choi, W. Choi, and S.-W. Kim, Sol. Energy Mater. Sol. Cells 95, 1610 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.01.011
38.
38. S.-J. Chang, J.-L. Hou, T.-J. Hsueh, K.-T. Lam, S. Li, and C.-H. Liu, IEEE J. Photovoltaics 3, 991 (2013).
http://dx.doi.org/10.1109/JPHOTOV.2013.2258192
39.
39. Y. Nishi, T. Miyata, and T. Minami, Thin Solid Films 528, 72 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.09.090
40.
40. N. P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.-R. Lee, and F. B. Prinz, Chem. Mater. 22, 4769 (2010).
http://dx.doi.org/10.1021/cm101227h
41.
41. D. Kim, I. Yun, and H. Kim, Curr. Appl. Phys. 10, S459 (2010).
http://dx.doi.org/10.1016/j.cap.2010.02.030
42.
42. Y. C. Lin, T. Y. Chen, L. C. Wang, and S. Y. Lien, J. Electrochem. Soc. 159, H599 (2012).
http://dx.doi.org/10.1149/2.108206jes
43.
43. J.-H. Kim, K.-J. Lee, J.-H. Roh, S.-W. Song, J.-H. Park, I.-H. Yer, and B.-M. Moon, J. Korean Phys. Soc. 60, 2025 (2012).
http://dx.doi.org/10.3938/jkps.60.2025
44.
44. H. Kamisaka, N. Mizuguchi, and K. Yamashita, J. Mater. Sci. 47, 7522 (2012).
http://dx.doi.org/10.1007/s10853-012-6491-2
45.
45. J. H. Noh, H. S. Han, S. Lee, D. H. Kim, J. H. Park, S. Park, J. Y. Kim, H. S. Jung, and K. S. Hong, J. Phys. Chem. C 114, 13867 (2010).
http://dx.doi.org/10.1021/jp104247t
46.
46. L. Zhao, X. Zhao, J. Liu, A. Zhang, D. Wang, and B. Wei, J. Sol-Gel Sci. Technol. 53, 475 (2009).
http://dx.doi.org/10.1007/s10971-009-2102-3
47.
47. T. Stubhan, H. Oh, L. Pinna, J. Krantz, I. Litzov, and C. J. Brabec, Org. Electron. 12, 1539 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.05.027
48.
48. A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, Sol. Energy Mater. Sol. Cells 95, 579 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.09.020
49.
49. J. Chang, Z. Lin, C. Zhu, C. Chi, J. Zhang, and J. Wu, ACS Appl. Mater. Interfaces 5, 6687 (2013).
http://dx.doi.org/10.1021/am4014488
50.
50. T. Minami, MRS Bull. 25, 38 (2000).
http://dx.doi.org/10.1557/mrs2000.149
51.
51. V. Kruefu, E. Peterson, C. Khantha, C. Siriwong, S. Phanichphant, and D. L. Carroll, Appl. Phys. Lett. 97, 053302 (2010).
http://dx.doi.org/10.1063/1.3465866
52.
52. L. Luo, W. Tao, X. Hu, T. Xiao, B. Heng, W. Huang, H. Wang, H. Han, Q. Jiang, J. Wang, and Y. Tang, J. Power Sources 196, 10518 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2011.08.011
53.
53. S. Yang, S. Guo, D. Xu, H. Xue, H. Kou, J. Wang, and G. Zhu, J. Fluorine Chem. 150, 78 (2013).
http://dx.doi.org/10.1016/j.jfluchem.2013.03.012
54.
54. F. Huang, Q. Li, G. J. Thorogood, Y.-B. Cheng, and R. A. Caruso, J. Mater. Chem. 22, 17128 (2012);
http://dx.doi.org/10.1039/c2jm32409a
54.K.-P. Wang, and H. Teng, Phys. Chem. Chem. Phys. 11, 9489 (2009).
http://dx.doi.org/10.1039/b912672d
55.
55. T. Nikolay, L. Larina, O. Shevaleevskiy, and B. T. Ahn, in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2011), p. 748.
http://dx.doi.org/10.1109/PVSC.2011.6186061
56.
56. X. , X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, and S. Huang, Adv. Funct. Mater. 20, 509 (2010).
http://dx.doi.org/10.1002/adfm.200901292
57.
57. M. Lira-Cantu, M. Khoda Siddiki, D. Muñoz-Rojas, R. Amade, and N. I. González-Pech, Sol. Energy Mater. Sol. Cells 94, 1227 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.03.011
58.
58. A. K. K. Kyaw, X. Sun, D. W. Zhao, S. T. Tan, Y. Divayana, and H. V. Demir, IEEE J. Sel. Top. Quantum Electron. 16, 1700 (2010).
http://dx.doi.org/10.1109/JSTQE.2009.2039200
59.
59. J. Liu, H. Yang, W. Tan, X. Zhou, and Y. Lin, Electrochim. Acta 56, 396 (2010).
http://dx.doi.org/10.1016/j.electacta.2010.08.063
60.
60. T. Loewenstein, K. Nonomura, T. Yoshida, E. Michaelis, D. Wöhrle, J. Rathousky, M. Wark, and D. Schlettwein, J. Electrochem. Soc. 153, A699 (2006).
http://dx.doi.org/10.1149/1.2170545
61.
61. H. Yamagata, N. J. Hestand, F. C. Spano, A. Köhler, C. Scharsich, S. T. Hoffmann, and H. Bässler, J. Chem. Phys. 139, 114903 (2013).
http://dx.doi.org/10.1063/1.4819906
62.
62. W. Lin, K. Ding, Z. Lin, J. Zhang, J. Huang, and F. Huang, Cryst. Eng. Comm. 13, 3338 (2011).
http://dx.doi.org/10.1039/c1ce05122a
63.
63. J. Li, N. Lu, X. Quan, S. Chen, and H. Zhao, Ind. Eng. Chem. Res. 47, 3804 (2008).
http://dx.doi.org/10.1021/ie0712028
64.
64. W. Qin, S. Lu, X. Wu, and S. Wang, Int. J. Electrochem. Sci. 8, 7984 (2013).
65.
65. X. Zhang, X. M. Li, T. L. Chen, J. M. Bian, and C. Y. Zhang, Thin Solid Films 492, 248 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.06.088
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4833475
Loading
/content/aip/journal/aplmater/1/6/10.1063/1.4833475
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/6/10.1063/1.4833475
2013-12-02
2014-10-01

Abstract

ZnO and TiO are two of the most commonly used n-type metal oxide semiconductors in new generation solar cells due to their abundance, low-cost, and stability. ZnO and TiO can be used as active layers, photoanodes, buffer layers, transparent conducting oxides, hole-blocking layers, and intermediate layers. Doping is essential to tailor the materials properties for each application. The dopants used and their impact in solar cells are reviewed. In addition, the advantages, disadvantages, and commercial potential of the various fabrication methods of these oxides are presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/6/1.4833475.html;jsessionid=193n6wlmumu2n.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/6/10.1063/1.4833475&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Research Update: Doping ZnO and TiO2 for solar cells
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4833475
10.1063/1.4833475
SEARCH_EXPAND_ITEM