Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins, and M. L. Brongersma, Nano Lett. 6, 2140 (2006).
2. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard, and J. R. Heath, Nature (London) 451, 168 (2008).
3. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature (London) 451, 163 (2008).
4. R. Wagner and W. Ellis, Appl. Phys. Lett. 4, 89 (1964).
5. W. M. Bullis, Solid-State Electron. 9, 143 (1966).
6. E. Simoen, Semicond. Sci. Technol. 2, 507 (1987)
7. T. I. Kamins, R. S. Williams, Y. Chen, Y. Chang, and Y. A. Chang, Appl. Phys. Lett. 76, 562 (2000).
8. K. Kang, D. A. Kim, H.-S. Lee, C.-J. Kim, K.-E. Yang, and M.-H. Jo, Adv. Mater. 20, 4684 (2008).
9. Y. Wang, V. Schmidt, S. Senz, and U. Gosele, Nat. Nanotechnol. 1, 186 (2006).
10. E. Garnett, W. Liang, and P. Yang, Adv. Mater. 19, 2946 (2007).
11. J. Lensch-Falk, E. Hemesath, D. Perea, and L. Lauhon, J. Mater. Chem. 19, 849 (2009).
12. T. E. Clark, P. Nimmatoori, K.-K. Lew, L. Pan, J. M. Redwing, and E. C. Dickey, Nano Lett. 8, 1246 (2008).
13. N. Li, T. Y. Tan, and U. Gosele, Appl. Phys. A 90, 591 (2008).
14. C.-Y. Wen, M. C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka, E. A. Stach, and F. M. Ross, Science 326, 1247 (2009).
15. J. L. Lensch-Falk, E. R. Hemesath, and L. J. Lauhon, Nano Lett. 8, 2669 (2008).
16. Y. Xiang, L. Cao, S. Conesa-Boj, S. Estrade, J. Arbiol, F. Peiro, M. Heiss, I. Zardo, J. R. Morante, M. L. Brongersma, and A. Fontcuberta I. Morral, Nanotechnology 20, 245608 (2009).
17. Y. Xiang, L. Cao, J. Arbiol, M. L. Brongersma, and A. Fontcuberta i Morral, Appl. Phys. Lett. 94, 163101 (2009).
18. S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, Science 316, 729 (2007).
19. S. V. Thombare, A. F. Marshall, and P. C. McIntyre, J. Appl. Phys. 112, 054325 (2012).
20. H. Adhikari, A. F. Marshall, C. E. D. Chidsey, and P. C. McIntyre, Nano Lett. 6, 318 (2006).
21. A. Nash, P. Nash, “Ge-Ni (Germanium-Nickel),” Binary Alloy Phase Diagrams, 2nd ed., edited by T. B. Massalski (ASM Alloy Phase Diagrams Center, 1990), Vol. 2.
22.See supplementary material at for TEM images of Ge nanowires grown at various temperatures and germane partial pressures for comparison and for the estimation of effective thickness of Ge deposited during VSS as well as VLS growth. [Supplementary Material]
23. M. Cao, A. Wang, and K. C. Saraswat, J. Electrochem. Soc. 142, 1566 (1995).
24. H. Jagannathan, M. Deal, Y. Nishi, J. Woodruff, C. E. D. Chidsey, and P. C. McIntyre, J. Appl. Phys. 100, 024318 (2006).
25. G. A. Bootsma and H. J. Gassen, J. Cryst. Growth 10, 223 (1971).
26. M. L. Green, Y. S. Ali, D. Brasen, and S. Nakahara, J. Electron. Mater. 17, 229 (1988).
27. P. M. Garone, J. C. Sturm, P. V. Schwartz, S. A. Schwarz, and B. J. Wilkens, Appl. Phys. Lett. 56, 1275 (1990).

Data & Media loading...


Article metrics loading...



The kinetics of vapor-solid-solid (VSS) Ge nanowire growth using a Ni-based catalyst were investigated to probe the rate-limiting step for this complex nanoscale crystal growth process. The effects of key parameters such as temperature and precursor partial pressure on the nanowire growth rate were studied in order to gain detailed insights into the growth kinetics. Two different regimes were observed for VSS growth of Ge nanowires as function of temperature. At higher temperatures (345 °C–375 °C), kinetics data suggest that mass transport of germane precursor to the catalyst surface is rate limiting. At lower temperatures (<345 °C), either surface reaction of the GeH precursor on the catalyst or incorporation of Ge into the nanowire across the wire/catalyst interface is rate limiting.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd