1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Pulsed laser deposited Si on multilayer graphene as anode material for lithium ion batteries
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/6/10.1063/1.4834735
1.
1. M. N. Obrovac and L. Christensen, Electrochem. Solid-State Lett. 7(5), A93A96 (2004).
http://dx.doi.org/10.1149/1.1652421
2.
2. J. Li and J. R. Dahn, J. Electrochem. Soc. 154(3), A156A161 (2007).
http://dx.doi.org/10.1149/1.2409862
3.
3. T. D. Hatchard and J. R. Dahn, J. Electrochem. Soc. 151(6), A838A842 (2004).
http://dx.doi.org/10.1149/1.1739217
4.
4. M. N. Obrovac and L. J. Krause, J. Electrochem. Soc. 154(2), A103A108 (2007).
http://dx.doi.org/10.1149/1.2402112
5.
5. L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer, and J. R. Dahn, J. Electrochem. Soc. 150(11), A1457A1464 (2003).
http://dx.doi.org/10.1149/1.1613668
6.
6. S. D. Beattie, D. Larcher, M. Morcrette, B. Simon, and J. M. Tarascon, J. Electrochem. Soc. 155(2), A158A163 (2008).
http://dx.doi.org/10.1149/1.2817828
7.
7. H. Wu and Y. Cui, Nanotoday 7(5), 414429 (2012).
http://dx.doi.org/10.1016/j.nantod.2012.08.004
8.
8. J. Graetz, C. C. Ahn, R. Yazami, and B. Fultz, Electrochem. Solid-State Lett. 6(9), A194A197 (2003).
http://dx.doi.org/10.1149/1.1596917
9.
9. S. Ohara, J. Suzuki, K. Sekine, and T. Takamura, J. Power Sources 119–121, 591596 (2003).
http://dx.doi.org/10.1016/S0378-7753(03)00301-X
10.
10. T. L. Kulova, A. M. Skundin, Y. V. Pleskov, E. I. Terukov, and O. I. Kon'kov, J. Electroanal. Chem. 600(1), 217225 (2007).
http://dx.doi.org/10.1016/j.jelechem.2006.07.002
11.
11. K.-L. Lee, J.-Y. Jung, S.-W. Lee, H.-S. Moon, and J.-W. Park, J. Power Sources 129(2), 270274 (2004).
http://dx.doi.org/10.1016/j.jpowsour.2003.10.013
12.
12. V. A. Sethuraman, K. Kowolik, and V. Srinivasan, J. Power Sources 196(1), 393398 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2010.06.043
13.
13. V. A. Sethuraman, V. Srinivasan, and J. Newman, J. Electrochem. Soc. 160(2), A394A403 (2012).
http://dx.doi.org/10.1149/2.008303jes
14.
14. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nat. Nanotechnol. 3(1), 3135 (2008).
http://dx.doi.org/10.1038/nnano.2007.411
15.
15. C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins, and Y. Cui, J. Power Sources 189(1), 3439 (2009).
http://dx.doi.org/10.1016/j.jpowsour.2008.12.047
16.
16. E. Quiroga-González, J. Carstensen, and H. Föll, Electrochim. Acta 101, 9398 (2013).
http://dx.doi.org/10.1016/j.electacta.2012.10.154
17.
17. M. W. Forney, R. A. DiLeo, A. Raisanen, M. J. Ganter, J. W. Staub, R. E. Rogers, R. D. Ridgley, and B. J. Landi, J. Power Sources 228, 270280 (2013).
http://dx.doi.org/10.1016/j.jpowsour.2012.11.109
18.
18. M. Thakur, S. L. Sinsabaugh, M. J. Isaacson, M. S. Wong, and S. L. Biswal, Sci. Rep. 2, 795 (2012).
http://dx.doi.org/10.1038/srep00795
19.
19. J. Luo, X. Zhao, J. Wu, H. D. Jang, H. H. Kung, and J. Huang, J. Phys. Chem. Lett. 3(13), 18241829 (2012).
http://dx.doi.org/10.1021/jz3006892
20.
20. R. C. Guzman, J. Yang, M. M.-C. Cheng, S. O. Salley, and K. Y. Simon Ng, J. Mater. Sci. 48(14), 48234833 (2013).
http://dx.doi.org/10.1007/s10853-012-7094-7
21.
21. Z. Yang, J. Guo, S. Xu, Y. Yu, H. D. Abruña, and L. A. Archer, Electrochem. Commun. 28, 4043 (2013).
http://dx.doi.org/10.1016/j.elecom.2012.11.032
22.
22. B. Fuchsbichler, C. Stangl, H. Kren, F. Uhlig, and S. Koller, J. Power Sources 196(5), 28892892 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2010.10.081
23.
23. M. Holzapfel, H. Buqa, L. J. Hardwick, M. Hahn, A. Würsig, W. Scheifele, P. Novák, R. Kötz, C. Veit, and F.-M. Petrat, Electrochim. Acta 52(3), 973978 (2006).
http://dx.doi.org/10.1016/j.electacta.2006.06.034
24.
24. M. L. Terranova, S. Orlanducci, E. Tamburri, V. Guglielmotti, and M. Rossi, J. Power Sources 246, 167177 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2013.07.065
25.
25. M. K. Datta, J. Maranchi, S. J. Chung, R. Epur, K. Kadakia, P. Jampani, and P. N. Kumta, Electrochim. Acta 56(13), 47174723 (2011).
http://dx.doi.org/10.1016/j.electacta.2011.01.124
26.
26. L. Ji, H. Zheng, A. Ismach, Z. Tan, S. Xun, E. Lin, V. Battaglia, V. Srinivasan, and Y. Zhang, Nano Energy 1(1), 164171 (2012).
http://dx.doi.org/10.1016/j.nanoen.2011.08.003
27.
27. Y. Q. Zhang, X. H. Xia, X. L. Wang, Y. J. Mai, S. J. Shi, Y. Y. Tang, L. Li, and J. P. Tu, Electrochem. Commun. 23, 1720 (2012).
http://dx.doi.org/10.1016/j.elecom.2012.07.001
28.
28. K. Evanoff, A. Magasinski, J. Yang, and G. Yushin, Adv. Energy Mater. 1(4), 495498 (2011).
http://dx.doi.org/10.1002/aenm.201100071
29.
29. A. M. Chockla, M. G. Panthani, V. C. Holmberg, C. M. Hessel, D. K. Reid, T. D. Bogart, J. T. Harris, C. B. Mullins, and B. A. Korgel, J. Phys. Chem. C 116(22), 1191711923 (2012).
http://dx.doi.org/10.1021/jp302344b
30.
30. X. Liu, D. Wang, and S. Shi, Electrochim. Acta 87, 865871 (2013).
http://dx.doi.org/10.1016/j.electacta.2012.09.026
31.
31. Q. Sa and Y. Wang, J. Power Sources 208, 4651 (2012).
http://dx.doi.org/10.1016/j.jpowsour.2012.02.020
32.
32. G. Radhakrishnan, P. M. Adams, A. D. Stapleton, H. G. Muller, and B. J. Foran, Appl. Phys. A 105(1), 3137 (2011).
http://dx.doi.org/10.1007/s00339-011-6514-x
33.
33. G. Radhakrishnan, J. D. Cardema, P. M. Adams, H. I. Kim, and B. Foran, J. Electrochem. Soc. 159(6), A752A761 (2012).
http://dx.doi.org/10.1149/2.052206jes
34.
34. P. Limthongkul, Y.-I. Jang, N. J. Dudney, and Y.-M. Chiang, J. Power Sources 119–121, 604609 (2003).
http://dx.doi.org/10.1016/S0378-7753(03)00303-3
35.
35. E. Quiroga-González, J. Carstensen, and H. Föll, Energies 6(10), 51455156 (2013).
http://dx.doi.org/10.3390/en6105145
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4834735
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

FESEM image of the Ni foam with cross-section of strut (inset). Scale bar in inset is 10 μm.

Image of FIG. 2.

Click to view

FIG. 2.

FESEM images of Ni after MLG deposition (a) and after PLD-Si growth (b).

Image of FIG. 3.

Click to view

FIG. 3.

Raman spectrum of MLG on Ni foam (a); line scan showing Raman spectra of PLD Si on MLG on Ni foam at different locations along the red line in the image inset (b).

Image of FIG. 4.

Click to view

FIG. 4.

TEM cross-section showing PLD silicon film with both crystalline and amorphous Si components deposited on multilayer graphene on Ni foam substrate (a); HRTEM showing amorphous Si layer on top of MLG on the Ni foam substrate (b). FFTs were taken at three locations as indicated by boxes in (b) and the corresponding diffraction patterns are shown to the right of the image.

Image of FIG. 5.

Click to view

FIG. 5.

Cycling performance at C/5 rate: PLD Si-MLG (a) and PLD Si-only (b). For purposes of comparison, the specific capacity of the Si-MLG cell shown above is normalized by the weight of Si rather than the combined weight of both Si and MLG. The respective insets in (a) and (b) show an expanded range of each plot. Note that in the Si-MLG an initial drop in capacity is seen in the 2nd cycle but subsequent cycles show full recovery.

Image of FIG. 6.

Click to view

FIG. 6.

Post-cycling FESEM images of Si-MLG (a) and Si-only (b) after 45 cycles at C/5. White areas correspond to the exposed Ni substrate resulting from delamination of the active material.

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/6/10.1063/1.4834735
2013-12-02
2014-04-18

Abstract

Pulsed laser deposition and chemical vapor deposition were used to deposit very thin silicon on multilayer graphene (MLG) on a nickel foam substrate for application as an anode material for lithium ion batteries. The as-grown material was directly fabricated into an anode without a binder, and tested in a half-cell configuration. Even under stressful voltage limits that accelerate degradation, the Si-MLG films displayed higher stability than Si-only electrodes. Post-cycling images of the anodes reveal the differences between the two material systems and emphasize the role of the graphene layers in improving adhesion and electrochemical stability of the Si.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/6/1.4834735.html;jsessionid=a6rlsq3gqfp19.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/6/10.1063/1.4834735&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Pulsed laser deposited Si on multilayer graphene as anode material for lithium ion batteries
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4834735
10.1063/1.4834735
SEARCH_EXPAND_ITEM