1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Bioorganic nanodots for non-volatile memory devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/6/10.1063/1.4838815
1.
1. M. Reches and E. Gazit, Science 300, 625 (2003).
http://dx.doi.org/10.1126/science.1082387
2.
2. L. C. Serpell, Biochim. Biophys. Acta 1502, 16 (2000).
http://dx.doi.org/10.1016/S0925-4439(00)00029-6
3.
3. O. Carny, D. E. Shalev, and E. Gazit, Nano Lett. 6, 1594 (2006).
http://dx.doi.org/10.1021/nl060468l
4.
4. J. Ryu, S. Y. Lim, and C. B. Park, Adv. Mater. 21, 1577 (2009).
http://dx.doi.org/10.1002/adma.200802700
5.
5. N. B. Sopher, Z. R. Abrams, M. Reches, E. Gazit, and Y. Hanein, J. Micromech. Microeng. 17, 2360 (2007).
http://dx.doi.org/10.1088/0960-1317/17/11/025
6.
6. L. Adler-Abramovich, D. Aronov, P. Beker, M. Yevnin, S. Stempler, L. Buzhansky, G. Rosenman, and E. Gazit, Nat. Nanotechnol. 4, 849 (2009).
http://dx.doi.org/10.1038/nnano.2009.298
7.
7. P. Beker, I. Koren, N. Amdursky, E. Gazit, and G. Rosenman, J. Mater. Sci. 45, 6374 (2010).
http://dx.doi.org/10.1007/s10853-010-4624-z
8.
8. A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, ACS Nano 4, 610 (2010).
http://dx.doi.org/10.1021/nn901327v
9.
9. N. Amdursky, P. Beker, I. Koren, B. Bank-Srour, E. Mishina, S. Semin, Th. Rasing, Yu. Rosenberg, Z. Barkay, E. Gazit, and G. Rosenman, Biomacromolecules 12, 1349 (2011).
http://dx.doi.org/10.1021/bm200117w
10.
10. N. Amdursky, A. Handelman, and G. Rosenman, Appl. Phys. Lett. 100, 103701 (2012).
http://dx.doi.org/10.1063/1.3691254
11.
11. N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, and G. Rosenman, Nano Lett. 9, 3111 (2009).
http://dx.doi.org/10.1021/nl9008265
12.
12. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, J. Am. Chem. Soc. 132, 15632 (2010).
http://dx.doi.org/10.1021/ja104373e
13.
13. M. Naich, G. Rosenman, and Y. Roizin, Thin Solid Films 471, 166 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.06.147
14.
14. V. Mikhelashvili, B. Meyler, S. Yofis, Y. Shneider, A. Zeidler, M. Garbrecht, T. Cohen-Hyams, W. D. Kaplan, M. Lisiansky, Y. Roizin, J. Salzman, and G. Eisenstein, Appl. Phys. Lett. 98, 212902 (2011).
http://dx.doi.org/10.1063/1.3595484
15.
15. C. H. Lee, J. Meteer, V. Narayanan, and E. C. Kan, J. Electron. Mater. 34, 1 (2005).
http://dx.doi.org/10.1007/s11664-005-0172-8
16.
16. S. Maikap, T. Y. Wang, P. J. Tzeng, C. H. Lin, T. C. Tien, L. S. Lee, J. R. Yang, and M. J. Tsai, Appl. Phys. Lett. 90, 262901 (2007).
http://dx.doi.org/10.1063/1.2751579
17.
17. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996).
http://dx.doi.org/10.1063/1.116085
18.
18. M. H. White, D. A. Adams, and J. K. Bu, IEEE Circuits Devices Mag. 16, 22 (2000).
http://dx.doi.org/10.1109/101.857747
19.
19. K. W. Guarini, C. T. Black, Y. Zhang, H. Kim, E. M. Sikorski, and I. V. Babich, J. Vac. Sci. Technol. B 20, 2788 (2002).
http://dx.doi.org/10.1116/1.1521730
20.
20. J. De Blauwe, IEEE Trans. Nanotechnol. 1, 72 (2002).
http://dx.doi.org/10.1109/TNANO.2002.1005428
21.
21. A. J. Hong, C.-C. Liu, Y. Wang, J. Kim, F. Xiu, S. Ji, J. Zou, P. F. Nealey, and K. L. Wang, Nano Lett. 10, 224 (2010).
http://dx.doi.org/10.1021/nl903340a
22.
22. S. Paydavosi, H. Abdu, G. J. Supran, and V. Bulovic, IEEE Trans. Nanotechnol. 10, 594 (2011).
http://dx.doi.org/10.1109/TNANO.2010.2056381
23.
23. A. Miura, R. Tsukamoto, S. Yoshii, I. Yamashita, Y. Uraoka, and T. Fuyuki, Nanotechnology 19, 255201 (2008).
http://dx.doi.org/10.1088/0957-4484/19/25/255201
24.
24. S. Tang, C. B. Mao, Y. R. Liu, D. Q. Kelly, and S. K. Banerjee, IEEE Trans. Electron Devices 54, 433 (2007).
http://dx.doi.org/10.1109/TED.2006.890234
25.
25. J. G. Heddle, I. Fujiwara, H. Yamadaki, S. Yoshii, K. Nishio, C. Addy, I. Yamashita, and J. R. H. Tame, Small 3, 1950 (2007).
http://dx.doi.org/10.1002/smll.200700400
26.
26. C. H. Görbitz, Chem. Commun. 2006, 2332.
http://dx.doi.org/10.1039/b603080g
27.
27. A. N. Rissanou, E. Georgilis, E. Kasotakis, A. Mitraki, and V. A. Harmandaris, J. Phys. Chem. B 117, 3962 (2013).
http://dx.doi.org/10.1021/jp311795b
28.
28. J. Jeon, C. E. Mills, and M. S. Shell, J. Phys. Chem. B 117, 3935 (2013).
http://dx.doi.org/10.1021/jp308280d
29.
29. A. T. Tu, Raman Spectroscopy in Biology: Principles and Applications (John Wiley and Sons Inc, Chichester, UK, 1982).
30.
30. J. D. Gelder, K. D. Gussem, P. Vandenabeele, and L. Moens, J. Raman Spectrosc. 38, 1133 (2007).
http://dx.doi.org/10.1002/jrs.1734
31.
31. B. Lekprasert, V. Sedman, C. J. Roberts, S. J. B. Tedler, and I. Notingher, Opt. Lett. 35, 4193 (2010).
http://dx.doi.org/10.1364/OL.35.004193
32.
32. M. C. Kim, S. H. Hong, H. R. Kim, S. Kim, S. H. Choi, R. G. Elliman, and S. P. Russo, Appl. Phys. Lett. 94, 112110 (2009).
http://dx.doi.org/10.1063/1.3097799
33.
33. Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, Appl. Phys. Lett. 52, 1103 (1988).
http://dx.doi.org/10.1063/1.99224
34.
34. Y. Rosenwaks, R. Shikler, T. Glatzel, and S. Sadewasser, Phys. Rev. B 70, 085320 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.085320
35.
35. G. Lubarsky, R. Shikler, N. Ashkenasy, and Y. Rosenwaks, J. Vac. Sci. Technol. B 20, 1914 (2002).
http://dx.doi.org/10.1116/1.1502701
36.
36. C. J. Kang, G. H. Buh, S. Lee, C. K. Kim, K. M. Mang, C. Im, and Y. Kuk, Appl. Phys. Lett. 74, 1815 (1999).
http://dx.doi.org/10.1063/1.123095
37.
37. J. G. Mihaychuk, J. Bloch, Y. Liu, and H. M. Vandriel, Opt. Lett. 20, 2063 (1995).
http://dx.doi.org/10.1364/OL.20.002063
38.
38. N. Shamir, J. G. Mihaychuk, and H. M. van Driel, J. Appl. Phys. 88, 896 (2000).
http://dx.doi.org/10.1063/1.373753
39.
39. G. Molas, B. De Salvo, G. Ghibaudo, D. Mariolle, A. Toffoli, N. Buffet, R. Puglisi, S. Lombardo, and S. Deleonibus, IEEE Trans. Nanotechnol. 3, 42 (2004).
http://dx.doi.org/10.1109/TNANO.2004.824016
40.
40.See supplementary material at http://dx.doi.org/10.1063/1.4838815 for full materials and methods section and additional supplemental figures showing SEM image and EDX analysis spectrum. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4838815
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Electron microscopy analysis of the FF PND. (a) TEM images of single FF PNDs. The inset of (a) shows the Fourier transform of a single dot. (b) ED ring pattern of the FF PND. (c) Size-distribution histogram of several TEM acquisitions.

Image of FIG. 2.

Click to view

FIG. 2.

AFM morphology of the FF PND. (a) Monolayer of FF PND on Si/SiO/APTMS surface. The bar corresponds to 500 nm, and the z-scale is 4 nm. (b) Size-distribution histogram of (c). (c) Raman spectrum of (a) using a Raman NSOM apparatus.

Image of FIG. 3.

Click to view

FIG. 3.

Charge retention of FF PND. (a) AFM topography of the patterned FF PND surface, exhibiting an array of PND and SiO. CPD images of (b) the array immediately after charge injection and (c) after 3 h. (d) and (e) CPD cross sections along the lines in (b) and (c).

Image of FIG. 4.

Click to view

FIG. 4.

C-V characteristics of a NVM capacitor with PNDs. The left scheme illustrated the NVM cell configuration, where the charge retention is provided by the dense array of FF-PND. The voltage sweep in the right graph starts from –6 V at the metal (InGa) electrode to 6 V (red line), and then the voltage decreases back from 6 V to −6 V (black line).

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/6/10.1063/1.4838815
2013-12-10
2014-04-17

Abstract

In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/6/1.4838815.html;jsessionid=3dcxgtrxne5uq.x-aip-live-01?itemId=/content/aip/journal/aplmater/1/6/10.1063/1.4838815&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Bioorganic nanodots for non-volatile memory devices
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4838815
10.1063/1.4838815
SEARCH_EXPAND_ITEM