1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Bioorganic nanodots for non-volatile memory devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/6/10.1063/1.4838815
1.
1. M. Reches and E. Gazit, Science 300, 625 (2003).
http://dx.doi.org/10.1126/science.1082387
2.
2. L. C. Serpell, Biochim. Biophys. Acta 1502, 16 (2000).
http://dx.doi.org/10.1016/S0925-4439(00)00029-6
3.
3. O. Carny, D. E. Shalev, and E. Gazit, Nano Lett. 6, 1594 (2006).
http://dx.doi.org/10.1021/nl060468l
4.
4. J. Ryu, S. Y. Lim, and C. B. Park, Adv. Mater. 21, 1577 (2009).
http://dx.doi.org/10.1002/adma.200802700
5.
5. N. B. Sopher, Z. R. Abrams, M. Reches, E. Gazit, and Y. Hanein, J. Micromech. Microeng. 17, 2360 (2007).
http://dx.doi.org/10.1088/0960-1317/17/11/025
6.
6. L. Adler-Abramovich, D. Aronov, P. Beker, M. Yevnin, S. Stempler, L. Buzhansky, G. Rosenman, and E. Gazit, Nat. Nanotechnol. 4, 849 (2009).
http://dx.doi.org/10.1038/nnano.2009.298
7.
7. P. Beker, I. Koren, N. Amdursky, E. Gazit, and G. Rosenman, J. Mater. Sci. 45, 6374 (2010).
http://dx.doi.org/10.1007/s10853-010-4624-z
8.
8. A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, ACS Nano 4, 610 (2010).
http://dx.doi.org/10.1021/nn901327v
9.
9. N. Amdursky, P. Beker, I. Koren, B. Bank-Srour, E. Mishina, S. Semin, Th. Rasing, Yu. Rosenberg, Z. Barkay, E. Gazit, and G. Rosenman, Biomacromolecules 12, 1349 (2011).
http://dx.doi.org/10.1021/bm200117w
10.
10. N. Amdursky, A. Handelman, and G. Rosenman, Appl. Phys. Lett. 100, 103701 (2012).
http://dx.doi.org/10.1063/1.3691254
11.
11. N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, and G. Rosenman, Nano Lett. 9, 3111 (2009).
http://dx.doi.org/10.1021/nl9008265
12.
12. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, J. Am. Chem. Soc. 132, 15632 (2010).
http://dx.doi.org/10.1021/ja104373e
13.
13. M. Naich, G. Rosenman, and Y. Roizin, Thin Solid Films 471, 166 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.06.147
14.
14. V. Mikhelashvili, B. Meyler, S. Yofis, Y. Shneider, A. Zeidler, M. Garbrecht, T. Cohen-Hyams, W. D. Kaplan, M. Lisiansky, Y. Roizin, J. Salzman, and G. Eisenstein, Appl. Phys. Lett. 98, 212902 (2011).
http://dx.doi.org/10.1063/1.3595484
15.
15. C. H. Lee, J. Meteer, V. Narayanan, and E. C. Kan, J. Electron. Mater. 34, 1 (2005).
http://dx.doi.org/10.1007/s11664-005-0172-8
16.
16. S. Maikap, T. Y. Wang, P. J. Tzeng, C. H. Lin, T. C. Tien, L. S. Lee, J. R. Yang, and M. J. Tsai, Appl. Phys. Lett. 90, 262901 (2007).
http://dx.doi.org/10.1063/1.2751579
17.
17. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996).
http://dx.doi.org/10.1063/1.116085
18.
18. M. H. White, D. A. Adams, and J. K. Bu, IEEE Circuits Devices Mag. 16, 22 (2000).
http://dx.doi.org/10.1109/101.857747
19.
19. K. W. Guarini, C. T. Black, Y. Zhang, H. Kim, E. M. Sikorski, and I. V. Babich, J. Vac. Sci. Technol. B 20, 2788 (2002).
http://dx.doi.org/10.1116/1.1521730
20.
20. J. De Blauwe, IEEE Trans. Nanotechnol. 1, 72 (2002).
http://dx.doi.org/10.1109/TNANO.2002.1005428
21.
21. A. J. Hong, C.-C. Liu, Y. Wang, J. Kim, F. Xiu, S. Ji, J. Zou, P. F. Nealey, and K. L. Wang, Nano Lett. 10, 224 (2010).
http://dx.doi.org/10.1021/nl903340a
22.
22. S. Paydavosi, H. Abdu, G. J. Supran, and V. Bulovic, IEEE Trans. Nanotechnol. 10, 594 (2011).
http://dx.doi.org/10.1109/TNANO.2010.2056381
23.
23. A. Miura, R. Tsukamoto, S. Yoshii, I. Yamashita, Y. Uraoka, and T. Fuyuki, Nanotechnology 19, 255201 (2008).
http://dx.doi.org/10.1088/0957-4484/19/25/255201
24.
24. S. Tang, C. B. Mao, Y. R. Liu, D. Q. Kelly, and S. K. Banerjee, IEEE Trans. Electron Devices 54, 433 (2007).
http://dx.doi.org/10.1109/TED.2006.890234
25.
25. J. G. Heddle, I. Fujiwara, H. Yamadaki, S. Yoshii, K. Nishio, C. Addy, I. Yamashita, and J. R. H. Tame, Small 3, 1950 (2007).
http://dx.doi.org/10.1002/smll.200700400
26.
26. C. H. Görbitz, Chem. Commun. 2006, 2332.
http://dx.doi.org/10.1039/b603080g
27.
27. A. N. Rissanou, E. Georgilis, E. Kasotakis, A. Mitraki, and V. A. Harmandaris, J. Phys. Chem. B 117, 3962 (2013).
http://dx.doi.org/10.1021/jp311795b
28.
28. J. Jeon, C. E. Mills, and M. S. Shell, J. Phys. Chem. B 117, 3935 (2013).
http://dx.doi.org/10.1021/jp308280d
29.
29. A. T. Tu, Raman Spectroscopy in Biology: Principles and Applications (John Wiley and Sons Inc, Chichester, UK, 1982).
30.
30. J. D. Gelder, K. D. Gussem, P. Vandenabeele, and L. Moens, J. Raman Spectrosc. 38, 1133 (2007).
http://dx.doi.org/10.1002/jrs.1734
31.
31. B. Lekprasert, V. Sedman, C. J. Roberts, S. J. B. Tedler, and I. Notingher, Opt. Lett. 35, 4193 (2010).
http://dx.doi.org/10.1364/OL.35.004193
32.
32. M. C. Kim, S. H. Hong, H. R. Kim, S. Kim, S. H. Choi, R. G. Elliman, and S. P. Russo, Appl. Phys. Lett. 94, 112110 (2009).
http://dx.doi.org/10.1063/1.3097799
33.
33. Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, Appl. Phys. Lett. 52, 1103 (1988).
http://dx.doi.org/10.1063/1.99224
34.
34. Y. Rosenwaks, R. Shikler, T. Glatzel, and S. Sadewasser, Phys. Rev. B 70, 085320 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.085320
35.
35. G. Lubarsky, R. Shikler, N. Ashkenasy, and Y. Rosenwaks, J. Vac. Sci. Technol. B 20, 1914 (2002).
http://dx.doi.org/10.1116/1.1502701
36.
36. C. J. Kang, G. H. Buh, S. Lee, C. K. Kim, K. M. Mang, C. Im, and Y. Kuk, Appl. Phys. Lett. 74, 1815 (1999).
http://dx.doi.org/10.1063/1.123095
37.
37. J. G. Mihaychuk, J. Bloch, Y. Liu, and H. M. Vandriel, Opt. Lett. 20, 2063 (1995).
http://dx.doi.org/10.1364/OL.20.002063
38.
38. N. Shamir, J. G. Mihaychuk, and H. M. van Driel, J. Appl. Phys. 88, 896 (2000).
http://dx.doi.org/10.1063/1.373753
39.
39. G. Molas, B. De Salvo, G. Ghibaudo, D. Mariolle, A. Toffoli, N. Buffet, R. Puglisi, S. Lombardo, and S. Deleonibus, IEEE Trans. Nanotechnol. 3, 42 (2004).
http://dx.doi.org/10.1109/TNANO.2004.824016
40.
40.See supplementary material at http://dx.doi.org/10.1063/1.4838815 for full materials and methods section and additional supplemental figures showing SEM image and EDX analysis spectrum. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4838815
Loading
/content/aip/journal/aplmater/1/6/10.1063/1.4838815
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/6/10.1063/1.4838815
2013-12-10
2014-10-02

Abstract

In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/6/1.4838815.html;jsessionid=20uud2671d8bg.x-aip-live-02?itemId=/content/aip/journal/aplmater/1/6/10.1063/1.4838815&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Bioorganic nanodots for non-volatile memory devices
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4838815
10.1063/1.4838815
SEARCH_EXPAND_ITEM