1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Electrical and microstructure analysis of nickel-based low-resistance ohmic contacts to n-GaSb
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/6/10.1063/1.4842355
1.
1. P. S. Dutta, H. Bhat, and V. Kumar, J. Appl. Phys. 81, 58215870 (1997).
http://dx.doi.org/10.1063/1.365356
2.
2. C. W. Hitchcock, R. J. Gutmann, H. Ehsani, I. B. Bhat, C. A. Wang, and C. G. W. Freeman, J. Cryst. Growth 195, 363372 (1998).
http://dx.doi.org/10.1016/S0022-0248(98)00595-8
3.
3. R. Rehm, M. Masur, J. Schmitz, V. Daumer, J. Niemasz, T. Vandervelde, and M. Walther, Infrared Phys. Technol. 59, 611 (2013).
http://dx.doi.org/10.1016/j.infrared.2012.12.001
4.
4. A. W. Bett, F. Dimroth, G. Stollwerck, and O. V. Sulima, Appl. Phys. A 69, 119129 (1999).
http://dx.doi.org/10.1007/s003390050983
5.
5. A. W. Bett, R. Adelhelm, C. Agert, R. Beckert, F. Dimroth, and U. Schubert, Sol. Energy Mater. Sol. Cells 66, 541550 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00236-1
6.
6. S. M. Sze, Semiconductor Devices (Wiley, New York, 2002).
7.
7.See http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaSb/electric.html for material and electronic parameters of compound semiconductors.
8.
8. Y. K. Su, F. S. Juang, and K. J. Gan, Jpn. J. Appl. Phys. 30, 914916 (1991).
http://dx.doi.org/10.1143/JJAP.30.914
9.
9. C. H. Heinz, Int. J. Electron. 54, 247254 (1983).
http://dx.doi.org/10.1080/00207218308938720
10.
10. A. Piotrowska, E. Kaminska, T. Piotrowski, and S. Kasjaniuk, Acta Phys. Pol. A 87, 419422 (1995).
11.
11. X. Li and A. G. Milnes, J. Electrochem. Soc. 143, 10141020 (1996).
http://dx.doi.org/10.1149/1.1836574
12.
12. A. Subekti, V. W. L. Chin, and T. L. Tansley, Solid-State Electron. 39, 329332 (1996).
http://dx.doi.org/10.1016/0038-1101(95)00144-1
13.
13. M. Rolland, S. Gaillard, E. Villemain, D. Riguad, and M. Valenza, J. Phys. III (France) 3, 18251832 (1993).
http://dx.doi.org/10.1051/jp3:1993242
14.
14. E. Villemain, S. Gaillard, M. Rolland, and A. Joullie, Mater. Sci. Eng. B 20, 162164 (1993).
http://dx.doi.org/10.1016/0921-5107(93)90419-N
15.
15. A. Vogt, H. L. Hartnagel, G. Miehe, H. Fuess, and J. Schmitz, J. Vac. Sci. Technol. B 14, 35143519 (1996).
http://dx.doi.org/10.1116/1.588790
16.
16. K. Varblianska, K. Tzenev, and T. Kotsinov, Phys. Stat. Sol. 163, 387393 (1997).
http://dx.doi.org/10.1002/1521-396X(199710)163:2<387::AID-PSSA387>3.0.CO;2-6
17.
17. J. Sigmund, M. Saglam, A. Vogt, H. L. Hartnagel, V. Buschmann, T. Weider et al., J. Cryst. Growth 227–228, 625629 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)00785-0
18.
18. A. Vogt, A. Simon, H. L. Hartnagel, J. Schikora, V. Buschmann, M. Rodewald et al., J. Appl. Phys. 83, 77157719 (1998).
http://dx.doi.org/10.1063/1.367943
19.
19. W. S. Tse, R. H. Chen, C. S. Ares Fang, and J. R. Chen, Appl. Phys. A 54, 556559 (1992).
http://dx.doi.org/10.1007/BF00324339
20.
20. A. Piotrowska and E. Kaminska, Thin Solid Films 193–194, 511527 (1990).
http://dx.doi.org/10.1016/S0040-6090(05)80061-6
21.
21. K. Ikossi, M. Goldenberg, and J. Mittereder, Solid-State Electron. 46, 16271631 (2002).
http://dx.doi.org/10.1016/S0038-1101(02)00116-8
22.
22. J. A. Robinson and S. E. Mohney, J. Appl. Phys. 98, 033703 (2005).
http://dx.doi.org/10.1063/1.1989429
23.
23. J. A. Robinson and S. E. Mohney, Solid-State Electron. 48, 16671672 (2004).
http://dx.doi.org/10.1016/j.sse.2004.02.022
24.
24. S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, Appl. Phys. Lett. 88, 131911 (2006).
http://dx.doi.org/10.1063/1.2172742
25.
25. Ralph E. Williams, Gallium Arsenide Processing Techniques (Artech House Inc., 1984).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4842355
Loading
/content/aip/journal/aplmater/1/6/10.1063/1.4842355
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/6/10.1063/1.4842355
2013-12-10
2014-11-29

Abstract

Ultra low resistance ohmic contacts are fabricated on n-GaSb grown by molecular beam epitaxy. Different doping concentrations and n-GaSb thicknesses are studied to understand the tunneling transport mechanism between the metal contacts and the semiconductor. Different contact metallization and anneal process windows are investigated to achieve optimal penetration depth of Au in GaSb for low resistances. The fabrication, electrical characterization, and microstructure analysis of the metal-semiconductor interfaces created during ohmic contact formation are discussed. The characterization techniques include cross-sectional transmission electron microscopy and energy dispersive spectroscopy. Specific transfer resistances down to 0.1 Ω mm and specific contact resistances of 1 × 10−6 Ω cm2 are observed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/6/1.4842355.html;jsessionid=rv6fn627n7r5.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/6/10.1063/1.4842355&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrical and microstructure analysis of nickel-based low-resistance ohmic contacts to n-GaSb
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4842355
10.1063/1.4842355
SEARCH_EXPAND_ITEM