1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
La-doped BaTiO3 heterostructures: Compensating the polarization discontinuity
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/6/10.1063/1.4849735
1.
1. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Mater. Phys. 2, 141 (2011).
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140445
2.
2. J. W. Reiner, F. J. Walker, and C. H. Ahn, Science 323, 1018 (2009).
http://dx.doi.org/10.1126/science.1169058
3.
3. A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
4.
4. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
http://dx.doi.org/10.1126/science.1131091
5.
5. S. A. Pauli, S. J. Leake, B. Delley, M. Björck, C. W. Schneider, C. M. Schlepütz, D. Martoccia, S. Paetel, J. Mannhart, and P. R. Willmott, Phys. Rev. Lett. 106, 036101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.036101
6.
6. M. L. Reinle-Schmitt, C. Cancellieri, D. Li, D. Fontaine, M. Medarde, E. Pomjakushina, C. W. Schneider, S. Gariglio, Ph. Ghosez, J.-M. Triscone, and P. R. Willmott, Nature Commun. 3, 932 (2012).
http://dx.doi.org/10.1038/ncomms1936
7.
7. M. Dawber, C. Lichtensteiger, and J.-M. Triscone, Phase Transitions 81, 623 (2008).
http://dx.doi.org/10.1080/01411590802048315
8.
8. S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, Science 276, 238 (1997).
http://dx.doi.org/10.1126/science.276.5310.238
9.
9. P. R. Willmott, S. A. Pauli, R. Herger, C. M. Schlepütz, D. Martoccia, B. D. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, and Y. Yacoby, Phys. Rev. Lett. 99, 155502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.155502
10.
10. Y. Yacoby, M. Sowwan, E. A. Stern, J. O. Cross, D. Brewe, R. Pindak, J. Pitney, E. B. Dufresne, and R. Clarke, Nature Mater. 1, 99 (2002).
http://dx.doi.org/10.1038/nmat735
11.
11. D. D. Fong, C. Cionca, Y. Yacoby, G. B. Stephenson, J. A. Eastman, P. H. Fuoss, S. K. Streiffer, C. Thompson, R. Clarke, R. Pindak, and E. A. Stern, Phys. Rev. B 71, 144112 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.144112
12.
12. D. P. Kumah, S. Shusterman, Y. Paltiel, Y. Yacoby, and R. Clarke, Nat. Nanotechnol. 4, 835 (2009).
http://dx.doi.org/10.1038/nnano.2009.271
13.
13.See supplementary material at http://dx.doi.org/10.1063/1.4849735 for additional details about the structural analysis. [Supplementary Material]
14.
14. M. T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, and M. Hanuskova, J. Eur. Ceram. Soc. 20, 1997 (2000).
http://dx.doi.org/10.1016/S0955-2219(00)00076-5
15.
15. Y. Yacoby, Y. Girshberg, E. A. Stern, and R. Clarke, Phys. Rev. B 74, 104113 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.104113
16.
16. G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S.-W. Cheong, J. Phys. Chem. 97, 2368 (1993).
http://dx.doi.org/10.1021/j100112a043
17.
17. W. N. Lawless and R. C. DeVries, J. Appl. Phys. 35, 2638 (1964).
http://dx.doi.org/10.1063/1.1713816
18.
18. S. H. Wemple, M. Didomenico Jr., and I. Camlibel, J. Phys. Chem. Solids 29, 1797 (1968).
http://dx.doi.org/10.1016/0022-3697(68)90164-9
19.
19. Y. L. Wang, A. K. Tagantsev, D. Damjanovic, N. Setter, V. K. Yarmarkin, A. I. Sokolov, and I. A. Lukyanchuk, J. Appl. Phys. 101, 104115 (2007).
http://dx.doi.org/10.1063/1.2733744
20.
20. J. D. Axe, Phys. Rev. 157, 429 (1967).
http://dx.doi.org/10.1103/PhysRev.157.429
21.
21. Ph. Ghosez, J.-P. Michenaud, and X. Gonze, Phys. Rev. B 58, 6224 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.6224
22.
22. Y. Wang, M. K. Niranjan, K. Janicka, J. P. Velev, M. Y. Zhuravlev, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. B 82, 094114 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.094114
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4849735
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic of nominal STO/LAO/LTO/BTO heterostructure and (b) electron-density profile measured using the COBRA x-ray phase-retrieval method. The approximate nominal LAO/LTO interface is at z = 0 nm. UC refers to the perovskite unit cell.

Image of FIG. 2.

Click to view

FIG. 2.

Layer-resolved composition distribution for a nominally STO substrate/3UC LAO/1 UC LTO/4UC BTO sample, derived from the COBRA-determined electron-density map in Fig. 1(b) . The dashed lines indicate the nominal interfaces; z = 0 corresponds approximately to the lower surface of the nominal LTO layer.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Layer-resolved lattice spacings, and (b) vertical displacements, in the AO layers between the oxygen anions and the A-site cations (Sr,La,Ba) of the heterostructure. z = 0 corresponds approximately to the lower surface of the nominal LTO layer. Negative displacements are towards the substrate.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Calculated (lines) and experimental values of the polarization (circles) deduced by fitting displacements to the model described in the text. The error bar indicates the uncertainty in the experimental values. The dashed line indicates polarization of bulk BTO. (b) Electric field in La-doped BTO as a function of distance from the LAO interface. The theoretical curves are plotted as a function of the dopant energy relative to the Fermi level.

Tables

Generic image for table

Click to view

TABLE I.

Parameters used to model the BTO:La component of the ferroelectric heterostructure.

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/6/10.1063/1.4849735
2013-12-18
2014-04-19

Abstract

We demonstrate a route to manipulate the polarization and internal electric field of a complex oxide heterostructure using a layering sequence based on the LaAlO-SrTiO interface. By combining sensitive atomic-level mapping of the structure using direct x-ray phase-retrieval methods with theoretical modeling of the electrostatic charge and polarization, we have devised a novel single-domain polar heterostructure. We find that ionic rearrangement results in strain and free energy minimization, and eliminates the polarization discontinuity leading to a two-fold increase of the spontaneous polarization towards the surface of an ultra-thin single-domain BaTiO film.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/6/1.4849735.html;jsessionid=s33bt0vb3per.x-aip-live-06?itemId=/content/aip/journal/aplmater/1/6/10.1063/1.4849735&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: La-doped BaTiO3 heterostructures: Compensating the polarization discontinuity
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4849735
10.1063/1.4849735
SEARCH_EXPAND_ITEM