1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
La-doped BaTiO3 heterostructures: Compensating the polarization discontinuity
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/1/6/10.1063/1.4849735
1.
1. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Mater. Phys. 2, 141 (2011).
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140445
2.
2. J. W. Reiner, F. J. Walker, and C. H. Ahn, Science 323, 1018 (2009).
http://dx.doi.org/10.1126/science.1169058
3.
3. A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
4.
4. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
http://dx.doi.org/10.1126/science.1131091
5.
5. S. A. Pauli, S. J. Leake, B. Delley, M. Björck, C. W. Schneider, C. M. Schlepütz, D. Martoccia, S. Paetel, J. Mannhart, and P. R. Willmott, Phys. Rev. Lett. 106, 036101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.036101
6.
6. M. L. Reinle-Schmitt, C. Cancellieri, D. Li, D. Fontaine, M. Medarde, E. Pomjakushina, C. W. Schneider, S. Gariglio, Ph. Ghosez, J.-M. Triscone, and P. R. Willmott, Nature Commun. 3, 932 (2012).
http://dx.doi.org/10.1038/ncomms1936
7.
7. M. Dawber, C. Lichtensteiger, and J.-M. Triscone, Phase Transitions 81, 623 (2008).
http://dx.doi.org/10.1080/01411590802048315
8.
8. S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto, Science 276, 238 (1997).
http://dx.doi.org/10.1126/science.276.5310.238
9.
9. P. R. Willmott, S. A. Pauli, R. Herger, C. M. Schlepütz, D. Martoccia, B. D. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, and Y. Yacoby, Phys. Rev. Lett. 99, 155502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.155502
10.
10. Y. Yacoby, M. Sowwan, E. A. Stern, J. O. Cross, D. Brewe, R. Pindak, J. Pitney, E. B. Dufresne, and R. Clarke, Nature Mater. 1, 99 (2002).
http://dx.doi.org/10.1038/nmat735
11.
11. D. D. Fong, C. Cionca, Y. Yacoby, G. B. Stephenson, J. A. Eastman, P. H. Fuoss, S. K. Streiffer, C. Thompson, R. Clarke, R. Pindak, and E. A. Stern, Phys. Rev. B 71, 144112 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.144112
12.
12. D. P. Kumah, S. Shusterman, Y. Paltiel, Y. Yacoby, and R. Clarke, Nat. Nanotechnol. 4, 835 (2009).
http://dx.doi.org/10.1038/nnano.2009.271
13.
13.See supplementary material at http://dx.doi.org/10.1063/1.4849735 for additional details about the structural analysis. [Supplementary Material]
14.
14. M. T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, and M. Hanuskova, J. Eur. Ceram. Soc. 20, 1997 (2000).
http://dx.doi.org/10.1016/S0955-2219(00)00076-5
15.
15. Y. Yacoby, Y. Girshberg, E. A. Stern, and R. Clarke, Phys. Rev. B 74, 104113 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.104113
16.
16. G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S.-W. Cheong, J. Phys. Chem. 97, 2368 (1993).
http://dx.doi.org/10.1021/j100112a043
17.
17. W. N. Lawless and R. C. DeVries, J. Appl. Phys. 35, 2638 (1964).
http://dx.doi.org/10.1063/1.1713816
18.
18. S. H. Wemple, M. Didomenico Jr., and I. Camlibel, J. Phys. Chem. Solids 29, 1797 (1968).
http://dx.doi.org/10.1016/0022-3697(68)90164-9
19.
19. Y. L. Wang, A. K. Tagantsev, D. Damjanovic, N. Setter, V. K. Yarmarkin, A. I. Sokolov, and I. A. Lukyanchuk, J. Appl. Phys. 101, 104115 (2007).
http://dx.doi.org/10.1063/1.2733744
20.
20. J. D. Axe, Phys. Rev. 157, 429 (1967).
http://dx.doi.org/10.1103/PhysRev.157.429
21.
21. Ph. Ghosez, J.-P. Michenaud, and X. Gonze, Phys. Rev. B 58, 6224 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.6224
22.
22. Y. Wang, M. K. Niranjan, K. Janicka, J. P. Velev, M. Y. Zhuravlev, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. B 82, 094114 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.094114
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4849735
Loading
/content/aip/journal/aplmater/1/6/10.1063/1.4849735
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/1/6/10.1063/1.4849735
2013-12-18
2014-07-22

Abstract

We demonstrate a route to manipulate the polarization and internal electric field of a complex oxide heterostructure using a layering sequence based on the LaAlO-SrTiO interface. By combining sensitive atomic-level mapping of the structure using direct x-ray phase-retrieval methods with theoretical modeling of the electrostatic charge and polarization, we have devised a novel single-domain polar heterostructure. We find that ionic rearrangement results in strain and free energy minimization, and eliminates the polarization discontinuity leading to a two-fold increase of the spontaneous polarization towards the surface of an ultra-thin single-domain BaTiO film.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/1/6/1.4849735.html;jsessionid=4i2d6ak9l8dco.x-aip-live-03?itemId=/content/aip/journal/aplmater/1/6/10.1063/1.4849735&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: La-doped BaTiO3 heterostructures: Compensating the polarization discontinuity
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/1/6/10.1063/1.4849735
10.1063/1.4849735
SEARCH_EXPAND_ITEM