1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Fabricating superconducting interfaces between artificially grown LaAlO3 and SrTiO3 thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4854335
1.
1. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140445
2.
2. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nature Mater. 11, 103 (2012).
http://dx.doi.org/10.1038/nmat3223
3.
3. A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
4.
4. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
http://dx.doi.org/10.1126/science.1131091
5.
5. N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nature Mater. 5, 204 (2006).
http://dx.doi.org/10.1038/nmat1569
6.
6. C. Cancellieri, D. Fontaine, S. Gariglio, N. Reyren, A. D. Caviglia, A. Fête, S. J. Leake, S. A. Pauli, P. R. Willmott, M. Stengel, P. Ghosez, and J.-M. Triscone, Phys. Rev. Lett. 107, 056102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.056102
7.
7. M. L. Reinle-Schmitt, C. Cancellieri, D. Li, D. Fontaine, M. Medarde, E. Pomjakushina, C. W. Schneider, S. Gariglio, P. Ghosez, J.-M. Triscone, and P. R. Willmott, Nat. Commun. 3, 932 (2012).
http://dx.doi.org/10.1038/ncomms1936
8.
8. Y. Xie, C. Bell, T. Yajima, Y. Hikita, and H. Y. Hwang, Nano Lett. 10, 2588 (2010).
http://dx.doi.org/10.1021/nl1012695
9.
9. J. Mannhart and D. G. Schlom, Science 327, 1607 (2010).
http://dx.doi.org/10.1126/science.1181862
10.
10. R. Pentcheva and A. E. Pickett, J. Phys.: Condens. Matter 22, 043001 (2010).
http://dx.doi.org/10.1088/0953-8984/22/4/043001
11.
11. N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007).
http://dx.doi.org/10.1126/science.1146006
12.
12. A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, Nature (London) 456, 624 (2008).
http://dx.doi.org/10.1038/nature07576
13.
13. B. Förg, C. Richter, and J. Mannhart, Appl. Phys. Lett. 100, 053506 (2012).
http://dx.doi.org/10.1063/1.3682102
14.
14. C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323, 1026 (2009).
http://dx.doi.org/10.1126/science.1168294
15.
15. D. Stornaiuolo, S. Gariglio, N. J. G. Couto, A. Fête, A. D. Caviglia, G. Seyfarth, D. Jaccard, A. F. Morpurgo, and J.-M. Triscone, Appl. Phys. Lett. 101, 222601 (2012).
http://dx.doi.org/10.1063/1.4768936
16.
16. S. Thiel, C. Schneider, L. Kourkoutis, D. Muller, N. Reyren, A. D. Caviglia, S. Gariglio, J.-M. Triscone, and J. Mannhart, Phys. Rev. Lett. 102, 046809 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.046809
17.
17. B. Jalan, S. J. Allen, G. E. Beltz, P. Moetakef, and S. Stemmer, Appl. Phys. Lett. 98, 132102 (2011).
http://dx.doi.org/10.1063/1.3571447
18.
18. M. R. Fitzsimmons, N. W. Hengartner, S. Singh, M. Zhernenkov, F. Y. Bruno, J. Santamaria, A. Brinkman, M. Huijben, H. J. A. Molegraaf, J. de la Venta, and I. K. Schuller, Phys. Rev. Lett. 107, 217201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.217201
19.
19. Z. Salman, O. Ofer, M. Radovic, H. Hao, M. Ben Shalom, K. H. Chow, Y. Dagan, M. D. Hossain, C. D. P. Levy, W. A. MacFarlane, G. M. Morris, L. Patthey, M. R. Pearson, H. Saadaoui, T. Schmitt, D. Wang, and R. F. Kiefl, Phys. Rev. Lett. 109, 257207 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.257207
20.
20. J.-M. Triscone and Ø. Fischer, Rep. Prog. Phys. 60, 1673 (1997).
http://dx.doi.org/10.1088/0034-4885/60/12/004
21.
21. C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, Proc. Natl. Acad. Sci. U.S.A. 108, 4720 (2011).
http://dx.doi.org/10.1073/pnas.1014849108
22.
22. J. W. Park, D. F. Bogorin, C. Cen, D. A. Felker, Y. Zhang, C. T. Nelson, C. W. Bark, C. M. Folkman, X. Q. Pan, M. S. Rzchowski, J. Levy, and C. B. Eom, Nat. Commun. 1, 94 (2010).
http://dx.doi.org/10.1038/ncomms1096
23.
23. T. Hernandez, C. W. Bark, D. A. Felker, C. B. Eom, and M. S. Rzchowski, Phys. Rev. B 85, 161407 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.161407
24.
24. P. Brinks, W. Siemons, J. E. Kleibeuker, G. Koster, G. Rijnders, and M. Huijben, Appl. Phys. Lett. 98, 242904 (2011).
http://dx.doi.org/10.1063/1.3600339
25.
25. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Science 266, 1540 (1994).
http://dx.doi.org/10.1126/science.266.5190.1540
26.
26. J. Nishimura, A. Ohtomo, A. Ohkubo, Y. Murakami, and M. Kawasaki, Jpn. J. Appl. Phys. 43, L1032 (2004).
http://dx.doi.org/10.1143/JJAP.43.L1032
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4854335 for more experimental details, sample growth characterizations, detailed transport properties, and friction force microscopic measurement test. [Supplementary Material]
28.
28. M. L. Reinle-Schmitt, C. Cancellieri, S. J. Leake, E. Pomjakushina, P. R. Willmott, A. Cavallaro, and J. A. Kilner, arXiv:1312.2486 (2013).
29.
29. M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, and D. H. A. Blank, Adv. Mater. 21, 1665 (2009).
http://dx.doi.org/10.1002/adma.200801448
30.
30. J. Fompeyrine, R. Berger, H. P. Lang, J. Perret, E. Mächler, C. Gerber, and J.-P. Locquet, Appl. Phys. Lett. 72, 1697 (1998).
http://dx.doi.org/10.1063/1.121155
31.
31. K. Iwahori, S. Watanabe, M. Kawai, K. Mizuno, K. Sasaki, and M. Yoshimoto, J. Appl Phys. 88, 7099 (2000).
http://dx.doi.org/10.1063/1.1328065
32.
32. G. Koster, G. Rijnders, D. Blank, and H. Rogalla, Physica C 339, 215 (2000).
http://dx.doi.org/10.1016/S0921-4534(00)00363-4
33.
33. T. Ohnishi, K. Shibuya, M. Lippmaa, D. Kobayashi, H. Kumigashira, M. Oshima, and H. Koinuma, Appl. Phys. Lett. 85, 272 (2004).
http://dx.doi.org/10.1063/1.1771461
34.
34. R. Bachelet, F. Sánchez, F. J. Palomares, C. Ocal, and J. Fontcuberta, Appl. Phys. Lett. 95, 141915 (2009).
http://dx.doi.org/10.1063/1.3240869
35.
35.For this measurement, we have used a film thicker than 15 u. c. in order to better observe the contribution of the layer.
36.
36. A. Ohtomo and H. Y. Hwang, J. Appl. Phys. 102, 083704 (2007).
http://dx.doi.org/10.1063/1.2798385
37.
37.We note that this slight off-stoichiometry may also be induced by the laser fluency used in this study. The influence of the laser fluency on the STO thin-films grown at this temperature requires further investigation.
38.
38. M. Lippmaa, N. Nakagawa, M. Kawasaki, S. Ohashi, Y. Inaguma, M. Itoh, and H. Koinuma, Appl. Phys. Lett. 74, 3543 (1999).
http://dx.doi.org/10.1063/1.124155
39.
39. O. Copie, V. Garcia, C. Bödefeld, C. Carrétéro, M. Bibes, G. Herranz, E. Jacquet, J.-L. Maurice, B. Vinter, S. Fusil, K. Bouzehouane, H. Jaffrès, and A. Barthélémy, Phys. Rev. Lett. 102, 216804 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.216804
40.
40. M. Sing, G. Berner, K. Goß, A. Müller, A. Ruff, A. Wetscherek, S. Thiel, J. Mannhart, S. Pauli, C. Schneider, P. Willmott, M. Gorgoi, F. Schäfers, and R. Claessen, Phys. Rev. Lett. 102, 176805 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.176805
41.
41. N. Reyren, S. Gariglio, A. D. Caviglia, D. Jaccard, T. Schneider, and J.-M. Triscone, Appl. Phys. Lett. 94, 112506 (2009).
http://dx.doi.org/10.1063/1.3100777
42.
42. C. Cancellieri, N. Reyren, S. Gariglio, A. D. Caviglia, A. Fête, and J.-M. Triscone, Europhys. Lett. 91, 17004 (2010).
http://dx.doi.org/10.1209/0295-5075/91/17004
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4854335
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4854335
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4854335
2014-01-06
2014-09-15

Abstract

Realization of a fully metallic two-dimensional electron gas (2DEG) at the interface between artificially grown LaAlO and SrTiO thin films has been an exciting challenge. Here we present for the first time the successful realization of a superconducting 2DEG at interfaces between artificially grown LaAlO and SrTiO thin films. Our results highlight the importance of two factors—the growth temperature and the SrTiO termination. We use local friction force microscopy and transport measurements to determine that in normal growth conditions the absence of a robust metallic state at low temperature in the artificially grown LaAlO/SrTiO interface is due to the nanoscale SrO segregation occurring on the SrTiO film surface during the growth and the associated defects in the SrTiO film. By adopting an extremely high SrTiO growth temperature, we demonstrate a way to realize metallic, down to the lowest temperature, and superconducting 2DEG at interfaces between LaAlO layers and artificially grown SrTiO thin films. This study paves the way to the realization of functional LaAlO/SrTiO superlattices and/or artificial LaAlO/SrTiO interfaces on other substrates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4854335.html;jsessionid=3suunhqibrhlw.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4854335&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Fabricating superconducting interfaces between artificially grown LaAlO3 and SrTiO3 thin films
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4854335
10.1063/1.4854335
SEARCH_EXPAND_ITEM