1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Fabricating superconducting interfaces between artificially grown LaAlO3 and SrTiO3 thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4854335
1.
1. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140445
2.
2. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nature Mater. 11, 103 (2012).
http://dx.doi.org/10.1038/nmat3223
3.
3. A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
4.
4. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
http://dx.doi.org/10.1126/science.1131091
5.
5. N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nature Mater. 5, 204 (2006).
http://dx.doi.org/10.1038/nmat1569
6.
6. C. Cancellieri, D. Fontaine, S. Gariglio, N. Reyren, A. D. Caviglia, A. Fête, S. J. Leake, S. A. Pauli, P. R. Willmott, M. Stengel, P. Ghosez, and J.-M. Triscone, Phys. Rev. Lett. 107, 056102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.056102
7.
7. M. L. Reinle-Schmitt, C. Cancellieri, D. Li, D. Fontaine, M. Medarde, E. Pomjakushina, C. W. Schneider, S. Gariglio, P. Ghosez, J.-M. Triscone, and P. R. Willmott, Nat. Commun. 3, 932 (2012).
http://dx.doi.org/10.1038/ncomms1936
8.
8. Y. Xie, C. Bell, T. Yajima, Y. Hikita, and H. Y. Hwang, Nano Lett. 10, 2588 (2010).
http://dx.doi.org/10.1021/nl1012695
9.
9. J. Mannhart and D. G. Schlom, Science 327, 1607 (2010).
http://dx.doi.org/10.1126/science.1181862
10.
10. R. Pentcheva and A. E. Pickett, J. Phys.: Condens. Matter 22, 043001 (2010).
http://dx.doi.org/10.1088/0953-8984/22/4/043001
11.
11. N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007).
http://dx.doi.org/10.1126/science.1146006
12.
12. A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, Nature (London) 456, 624 (2008).
http://dx.doi.org/10.1038/nature07576
13.
13. B. Förg, C. Richter, and J. Mannhart, Appl. Phys. Lett. 100, 053506 (2012).
http://dx.doi.org/10.1063/1.3682102
14.
14. C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323, 1026 (2009).
http://dx.doi.org/10.1126/science.1168294
15.
15. D. Stornaiuolo, S. Gariglio, N. J. G. Couto, A. Fête, A. D. Caviglia, G. Seyfarth, D. Jaccard, A. F. Morpurgo, and J.-M. Triscone, Appl. Phys. Lett. 101, 222601 (2012).
http://dx.doi.org/10.1063/1.4768936
16.
16. S. Thiel, C. Schneider, L. Kourkoutis, D. Muller, N. Reyren, A. D. Caviglia, S. Gariglio, J.-M. Triscone, and J. Mannhart, Phys. Rev. Lett. 102, 046809 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.046809
17.
17. B. Jalan, S. J. Allen, G. E. Beltz, P. Moetakef, and S. Stemmer, Appl. Phys. Lett. 98, 132102 (2011).
http://dx.doi.org/10.1063/1.3571447
18.
18. M. R. Fitzsimmons, N. W. Hengartner, S. Singh, M. Zhernenkov, F. Y. Bruno, J. Santamaria, A. Brinkman, M. Huijben, H. J. A. Molegraaf, J. de la Venta, and I. K. Schuller, Phys. Rev. Lett. 107, 217201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.217201
19.
19. Z. Salman, O. Ofer, M. Radovic, H. Hao, M. Ben Shalom, K. H. Chow, Y. Dagan, M. D. Hossain, C. D. P. Levy, W. A. MacFarlane, G. M. Morris, L. Patthey, M. R. Pearson, H. Saadaoui, T. Schmitt, D. Wang, and R. F. Kiefl, Phys. Rev. Lett. 109, 257207 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.257207
20.
20. J.-M. Triscone and Ø. Fischer, Rep. Prog. Phys. 60, 1673 (1997).
http://dx.doi.org/10.1088/0034-4885/60/12/004
21.
21. C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, Proc. Natl. Acad. Sci. U.S.A. 108, 4720 (2011).
http://dx.doi.org/10.1073/pnas.1014849108
22.
22. J. W. Park, D. F. Bogorin, C. Cen, D. A. Felker, Y. Zhang, C. T. Nelson, C. W. Bark, C. M. Folkman, X. Q. Pan, M. S. Rzchowski, J. Levy, and C. B. Eom, Nat. Commun. 1, 94 (2010).
http://dx.doi.org/10.1038/ncomms1096
23.
23. T. Hernandez, C. W. Bark, D. A. Felker, C. B. Eom, and M. S. Rzchowski, Phys. Rev. B 85, 161407 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.161407
24.
24. P. Brinks, W. Siemons, J. E. Kleibeuker, G. Koster, G. Rijnders, and M. Huijben, Appl. Phys. Lett. 98, 242904 (2011).
http://dx.doi.org/10.1063/1.3600339
25.
25. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Science 266, 1540 (1994).
http://dx.doi.org/10.1126/science.266.5190.1540
26.
26. J. Nishimura, A. Ohtomo, A. Ohkubo, Y. Murakami, and M. Kawasaki, Jpn. J. Appl. Phys. 43, L1032 (2004).
http://dx.doi.org/10.1143/JJAP.43.L1032
27.
27.See supplementary material at http://dx.doi.org/10.1063/1.4854335 for more experimental details, sample growth characterizations, detailed transport properties, and friction force microscopic measurement test. [Supplementary Material]
28.
28. M. L. Reinle-Schmitt, C. Cancellieri, S. J. Leake, E. Pomjakushina, P. R. Willmott, A. Cavallaro, and J. A. Kilner, arXiv:1312.2486 (2013).
29.
29. M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, and D. H. A. Blank, Adv. Mater. 21, 1665 (2009).
http://dx.doi.org/10.1002/adma.200801448
30.
30. J. Fompeyrine, R. Berger, H. P. Lang, J. Perret, E. Mächler, C. Gerber, and J.-P. Locquet, Appl. Phys. Lett. 72, 1697 (1998).
http://dx.doi.org/10.1063/1.121155
31.
31. K. Iwahori, S. Watanabe, M. Kawai, K. Mizuno, K. Sasaki, and M. Yoshimoto, J. Appl Phys. 88, 7099 (2000).
http://dx.doi.org/10.1063/1.1328065
32.
32. G. Koster, G. Rijnders, D. Blank, and H. Rogalla, Physica C 339, 215 (2000).
http://dx.doi.org/10.1016/S0921-4534(00)00363-4
33.
33. T. Ohnishi, K. Shibuya, M. Lippmaa, D. Kobayashi, H. Kumigashira, M. Oshima, and H. Koinuma, Appl. Phys. Lett. 85, 272 (2004).
http://dx.doi.org/10.1063/1.1771461
34.
34. R. Bachelet, F. Sánchez, F. J. Palomares, C. Ocal, and J. Fontcuberta, Appl. Phys. Lett. 95, 141915 (2009).
http://dx.doi.org/10.1063/1.3240869
35.
35.For this measurement, we have used a film thicker than 15 u. c. in order to better observe the contribution of the layer.
36.
36. A. Ohtomo and H. Y. Hwang, J. Appl. Phys. 102, 083704 (2007).
http://dx.doi.org/10.1063/1.2798385
37.
37.We note that this slight off-stoichiometry may also be induced by the laser fluency used in this study. The influence of the laser fluency on the STO thin-films grown at this temperature requires further investigation.
38.
38. M. Lippmaa, N. Nakagawa, M. Kawasaki, S. Ohashi, Y. Inaguma, M. Itoh, and H. Koinuma, Appl. Phys. Lett. 74, 3543 (1999).
http://dx.doi.org/10.1063/1.124155
39.
39. O. Copie, V. Garcia, C. Bödefeld, C. Carrétéro, M. Bibes, G. Herranz, E. Jacquet, J.-L. Maurice, B. Vinter, S. Fusil, K. Bouzehouane, H. Jaffrès, and A. Barthélémy, Phys. Rev. Lett. 102, 216804 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.216804
40.
40. M. Sing, G. Berner, K. Goß, A. Müller, A. Ruff, A. Wetscherek, S. Thiel, J. Mannhart, S. Pauli, C. Schneider, P. Willmott, M. Gorgoi, F. Schäfers, and R. Claessen, Phys. Rev. Lett. 102, 176805 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.176805
41.
41. N. Reyren, S. Gariglio, A. D. Caviglia, D. Jaccard, T. Schneider, and J.-M. Triscone, Appl. Phys. Lett. 94, 112506 (2009).
http://dx.doi.org/10.1063/1.3100777
42.
42. C. Cancellieri, N. Reyren, S. Gariglio, A. D. Caviglia, A. Fête, and J.-M. Triscone, Europhys. Lett. 91, 17004 (2010).
http://dx.doi.org/10.1209/0295-5075/91/17004
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4854335
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic of the fabrication processes for the so-called and samples.

Image of FIG. 2.

Click to view

FIG. 2.

Transport properties of the LAO/STO/STO samples with STO layers grown at 800 °C. (a) A sketch of the LAO/STO/STO sample with a Hall-bar pattern used to measure the sheet resistance and carrier density of the system. (b) Sheet conductance at 280 K; (c) −1/e at 5 K versus STO layer thickness (u.c.). Black open (blue solid) circles are for () samples. The shaded areas in (b) and (c) indicate the room-temperature sheet conductance and −1/e at 5 K, respectively, in standard LAO/STO interfaces. The lines are guides to the eye.

Image of FIG. 3.

Click to view

FIG. 3.

Surface characterization (a) and (b) of a TiO-terminated STO substrate, and (c) and (j) of 15 u.c. thick STO films grown at 800 °C using atomic force microscopy. Vertical force microscopy (VFM) images display contrast due to surface topography, whereas friction force microscopy (FFM) images exhibit chemical contrast due to the mixed termination of the surface. (c) and (e) VFM, and (d) and (f) FFM images of two as-grown 15 u.c. STO films. (g) VFM and (h) FFM images of the STO film surface after the annealing at 1000 °C. The contrast in the FFM image reveals the presence of a mixed-terminated surface. (i) VFM and (j) FFM images of a 15 u.c. STO film etched by BHF and annealed at 1000 °C. No contrast in the FFM scan is observed.

Image of FIG. 4.

Click to view

FIG. 4.

(a) X-ray diffraction patterns of 40 u.c. homoepitaxial STO films grown at 800 °C and 1100 °C. The arrows indicate finite size oscillations. (b) Sheet conductance at 280 K for STO layers of different thickness (u.c.). Blue circles (black squares) are for samples with STO layers grown at 800 °C (1100 °C). The red star is for an sample with the STO layer grown at 1100 °C. The shaded area indicates the room-temperature sheet conductance in standard LAO/STO interfaces. The lines are guides to the eye. (c) VFM and (d) FFM images of a 40 u.c. thick STO film grown on a TiO-terminated STO substrate at 1100 °C. (e) VFM and (f) FFM images of the same sample after annealing at 1000 °C.

Image of FIG. 5.

Click to view

FIG. 5.

Magnetotransport properties and superconductivity of a LAO/STO/STO heterostructure with a STO layer of 40 u.c. grown at 1100 °C. (a) Inverse Hall constant and (b) the electron mobility as a function of temperature. (c) Magnetoresistance at 1.5 K for different gate voltages V. (d) Normalized resistance (T)/(500 mK) as a function of temperature displaying superconducting transitions. Blue solid squares and black open circles are for a LAO/STO interface with artificially grown STO layer and for a “standard” LAO/STO sample, respectively.

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4854335
2014-01-06
2014-04-19

Abstract

Realization of a fully metallic two-dimensional electron gas (2DEG) at the interface between artificially grown LaAlO and SrTiO thin films has been an exciting challenge. Here we present for the first time the successful realization of a superconducting 2DEG at interfaces between artificially grown LaAlO and SrTiO thin films. Our results highlight the importance of two factors—the growth temperature and the SrTiO termination. We use local friction force microscopy and transport measurements to determine that in normal growth conditions the absence of a robust metallic state at low temperature in the artificially grown LaAlO/SrTiO interface is due to the nanoscale SrO segregation occurring on the SrTiO film surface during the growth and the associated defects in the SrTiO film. By adopting an extremely high SrTiO growth temperature, we demonstrate a way to realize metallic, down to the lowest temperature, and superconducting 2DEG at interfaces between LaAlO layers and artificially grown SrTiO thin films. This study paves the way to the realization of functional LaAlO/SrTiO superlattices and/or artificial LaAlO/SrTiO interfaces on other substrates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4854335.html;jsessionid=2dwhx14fgshwl.x-aip-live-01?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4854335&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Fabricating superconducting interfaces between artificially grown LaAlO3 and SrTiO3 thin films
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4854335
10.1063/1.4854335
SEARCH_EXPAND_ITEM