Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).
2. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nature Mater. 11, 103 (2012).
3. A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
4. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
5. N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nature Mater. 5, 204 (2006).
6. C. Cancellieri, D. Fontaine, S. Gariglio, N. Reyren, A. D. Caviglia, A. Fête, S. J. Leake, S. A. Pauli, P. R. Willmott, M. Stengel, P. Ghosez, and J.-M. Triscone, Phys. Rev. Lett. 107, 056102 (2011).
7. M. L. Reinle-Schmitt, C. Cancellieri, D. Li, D. Fontaine, M. Medarde, E. Pomjakushina, C. W. Schneider, S. Gariglio, P. Ghosez, J.-M. Triscone, and P. R. Willmott, Nat. Commun. 3, 932 (2012).
8. Y. Xie, C. Bell, T. Yajima, Y. Hikita, and H. Y. Hwang, Nano Lett. 10, 2588 (2010).
9. J. Mannhart and D. G. Schlom, Science 327, 1607 (2010).
10. R. Pentcheva and A. E. Pickett, J. Phys.: Condens. Matter 22, 043001 (2010).
11. N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007).
12. A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, Nature (London) 456, 624 (2008).
13. B. Förg, C. Richter, and J. Mannhart, Appl. Phys. Lett. 100, 053506 (2012).
14. C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323, 1026 (2009).
15. D. Stornaiuolo, S. Gariglio, N. J. G. Couto, A. Fête, A. D. Caviglia, G. Seyfarth, D. Jaccard, A. F. Morpurgo, and J.-M. Triscone, Appl. Phys. Lett. 101, 222601 (2012).
16. S. Thiel, C. Schneider, L. Kourkoutis, D. Muller, N. Reyren, A. D. Caviglia, S. Gariglio, J.-M. Triscone, and J. Mannhart, Phys. Rev. Lett. 102, 046809 (2009).
17. B. Jalan, S. J. Allen, G. E. Beltz, P. Moetakef, and S. Stemmer, Appl. Phys. Lett. 98, 132102 (2011).
18. M. R. Fitzsimmons, N. W. Hengartner, S. Singh, M. Zhernenkov, F. Y. Bruno, J. Santamaria, A. Brinkman, M. Huijben, H. J. A. Molegraaf, J. de la Venta, and I. K. Schuller, Phys. Rev. Lett. 107, 217201 (2011).
19. Z. Salman, O. Ofer, M. Radovic, H. Hao, M. Ben Shalom, K. H. Chow, Y. Dagan, M. D. Hossain, C. D. P. Levy, W. A. MacFarlane, G. M. Morris, L. Patthey, M. R. Pearson, H. Saadaoui, T. Schmitt, D. Wang, and R. F. Kiefl, Phys. Rev. Lett. 109, 257207 (2012).
20. J.-M. Triscone and Ø. Fischer, Rep. Prog. Phys. 60, 1673 (1997).
21. C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, Proc. Natl. Acad. Sci. U.S.A. 108, 4720 (2011).
22. J. W. Park, D. F. Bogorin, C. Cen, D. A. Felker, Y. Zhang, C. T. Nelson, C. W. Bark, C. M. Folkman, X. Q. Pan, M. S. Rzchowski, J. Levy, and C. B. Eom, Nat. Commun. 1, 94 (2010).
23. T. Hernandez, C. W. Bark, D. A. Felker, C. B. Eom, and M. S. Rzchowski, Phys. Rev. B 85, 161407 (2012).
24. P. Brinks, W. Siemons, J. E. Kleibeuker, G. Koster, G. Rijnders, and M. Huijben, Appl. Phys. Lett. 98, 242904 (2011).
25. M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Science 266, 1540 (1994).
26. J. Nishimura, A. Ohtomo, A. Ohkubo, Y. Murakami, and M. Kawasaki, Jpn. J. Appl. Phys. 43, L1032 (2004).
27.See supplementary material at for more experimental details, sample growth characterizations, detailed transport properties, and friction force microscopic measurement test. [Supplementary Material]
28. M. L. Reinle-Schmitt, C. Cancellieri, S. J. Leake, E. Pomjakushina, P. R. Willmott, A. Cavallaro, and J. A. Kilner, arXiv:1312.2486 (2013).
29. M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, and D. H. A. Blank, Adv. Mater. 21, 1665 (2009).
30. J. Fompeyrine, R. Berger, H. P. Lang, J. Perret, E. Mächler, C. Gerber, and J.-P. Locquet, Appl. Phys. Lett. 72, 1697 (1998).
31. K. Iwahori, S. Watanabe, M. Kawai, K. Mizuno, K. Sasaki, and M. Yoshimoto, J. Appl Phys. 88, 7099 (2000).
32. G. Koster, G. Rijnders, D. Blank, and H. Rogalla, Physica C 339, 215 (2000).
33. T. Ohnishi, K. Shibuya, M. Lippmaa, D. Kobayashi, H. Kumigashira, M. Oshima, and H. Koinuma, Appl. Phys. Lett. 85, 272 (2004).
34. R. Bachelet, F. Sánchez, F. J. Palomares, C. Ocal, and J. Fontcuberta, Appl. Phys. Lett. 95, 141915 (2009).
35.For this measurement, we have used a film thicker than 15 u. c. in order to better observe the contribution of the layer.
36. A. Ohtomo and H. Y. Hwang, J. Appl. Phys. 102, 083704 (2007).
37.We note that this slight off-stoichiometry may also be induced by the laser fluency used in this study. The influence of the laser fluency on the STO thin-films grown at this temperature requires further investigation.
38. M. Lippmaa, N. Nakagawa, M. Kawasaki, S. Ohashi, Y. Inaguma, M. Itoh, and H. Koinuma, Appl. Phys. Lett. 74, 3543 (1999).
39. O. Copie, V. Garcia, C. Bödefeld, C. Carrétéro, M. Bibes, G. Herranz, E. Jacquet, J.-L. Maurice, B. Vinter, S. Fusil, K. Bouzehouane, H. Jaffrès, and A. Barthélémy, Phys. Rev. Lett. 102, 216804 (2009).
40. M. Sing, G. Berner, K. Goß, A. Müller, A. Ruff, A. Wetscherek, S. Thiel, J. Mannhart, S. Pauli, C. Schneider, P. Willmott, M. Gorgoi, F. Schäfers, and R. Claessen, Phys. Rev. Lett. 102, 176805 (2009).
41. N. Reyren, S. Gariglio, A. D. Caviglia, D. Jaccard, T. Schneider, and J.-M. Triscone, Appl. Phys. Lett. 94, 112506 (2009).
42. C. Cancellieri, N. Reyren, S. Gariglio, A. D. Caviglia, A. Fête, and J.-M. Triscone, Europhys. Lett. 91, 17004 (2010).

Data & Media loading...


Article metrics loading...



Realization of a fully metallic two-dimensional electron gas (2DEG) at the interface between artificially grown LaAlO and SrTiO thin films has been an exciting challenge. Here we present for the first time the successful realization of a superconducting 2DEG at interfaces between artificially grown LaAlO and SrTiO thin films. Our results highlight the importance of two factors—the growth temperature and the SrTiO termination. We use local friction force microscopy and transport measurements to determine that in normal growth conditions the absence of a robust metallic state at low temperature in the artificially grown LaAlO/SrTiO interface is due to the nanoscale SrO segregation occurring on the SrTiO film surface during the growth and the associated defects in the SrTiO film. By adopting an extremely high SrTiO growth temperature, we demonstrate a way to realize metallic, down to the lowest temperature, and superconducting 2DEG at interfaces between LaAlO layers and artificially grown SrTiO thin films. This study paves the way to the realization of functional LaAlO/SrTiO superlattices and/or artificial LaAlO/SrTiO interfaces on other substrates.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd