1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Diversity of hydrogen configuration and its roles in SrTiO3−δ
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4854355
1.
1. A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, Phys. Rev. Lett. 101, 055502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.055502
2.
2. M.-H. Du and K. Biswas, Phys. Rev. Lett. 106, 115502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.115502
3.
3. D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, and M. Takano, Nature Mater. 4, 816 (2005).
http://dx.doi.org/10.1038/nmat1498
4.
4. A. Walsh, C. R. A. Catlow, A. G. H. Smith, A. A. Sokol, and S. M. Woodley, Phys. Rev. B 83, 220301R (2011).
http://dx.doi.org/10.1103/PhysRevB.83.220301
5.
5. Y. Iwazaki, T. Suzuki, Y. Mizuno, and S. Tsuneyuki, Phys. Rev. B 86, 214103 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.214103
6.
6. W. Luo, W. Duan, S. G. Louie, and M. L. Cohen, Phys. Rev. B 70, 214109 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.214109
7.
7. R. Moos, W. Menesklou, and K. H. Härdtl, Appl. Phys. A 61, 389 (1995).
http://dx.doi.org/10.1007/BF01540113
8.
8. W. Gong, H. Yun, Y. B. Ning, J. E. Greedan, W. R. Datars, and C. V. Stager, J. Solid State Chem. 90, 320 (1991).
http://dx.doi.org/10.1016/0022-4596(91)90149-C
9.
9. J. F. Schooley, W. R. Hosler, and M. L. Cohen, Phys. Rev. Lett. 12, 474 (1964).
http://dx.doi.org/10.1103/PhysRevLett.12.474
10.
10. K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, Phys. Rev. Lett. 88, 075508 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.075508
11.
11. K. H. Härdtl and R. Wernicke, Solid State Commun. 10, 153 (1972).
http://dx.doi.org/10.1016/0038-1098(72)90370-5
12.
12. M. Choi, F. Oba, and I. Tanaka, Appl. Phys. Lett. 98, 172901 (2011).
http://dx.doi.org/10.1063/1.3583460
13.
13. D. Ricci, G. Bano, G. Pacchioni, and F. Illas, Phys. Rev. B 68, 224105 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.224105
14.
14. N. Shanthi and D. D. Sarma, Phys. Rev. B 57, 2153 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.2153
15.
15. J. Carrasco, F. Illas, N. Lopez, E. A. Kotomin, Yu. F. Zhukovskii, R. A. Evarestov, Y. A. Mastrikov, S. Piskunov, and J. Maier, Phys. Rev. B 73, 064106 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.064106
16.
16. H. Takenaka and D. J. Singh, Phys. Rev. B 75, 241102R (2007).
http://dx.doi.org/10.1103/PhysRevB.75.241102
17.
17. M.-H. Du and D. J. Singh, Phys. Rev. B 79, 205201 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205201
18.
18. B. Jalan, R. E. Herbert, T. E. Mates, and S. Stemmer, Appl. Phys. Lett. 93, 052907 (2008).
http://dx.doi.org/10.1063/1.2969037
19.
19. S. Mochizuki, F. Fujishiro, K. Ishiwata, and K. Shibata, Physica B 376, 816 (2006).
http://dx.doi.org/10.1016/j.physb.2005.12.204
20.
20. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996);
http://dx.doi.org/10.1103/PhysRevB.54.11169
20.G. Kresse and D. Joubert, Phys. Rev. 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
21.
21. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003);
http://dx.doi.org/10.1063/1.1564060
21.J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
http://dx.doi.org/10.1063/1.2204597
22.
22. F. W. Lytle, J. Appl. Phys. 35, 2212 (1964).
http://dx.doi.org/10.1063/1.1702820
23.
23. K. van Benthem and C. Elässer, J. Appl. Phys. 90, 6156 (2001).
http://dx.doi.org/10.1063/1.1415766
24.
24. C. Persson, Y.-J. Zhao, S. Lany, and A. Zunger, Phys. Rev. B 72, 035211 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035211
25.
25. W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).
http://dx.doi.org/10.1088/0953-8984/21/8/084204
26.
26.The Mulliken charge analysis is performed by using CASTEP code; M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/301
27.
27. D. D. Cuong, B. Lee, K. M. Choi, H.-S. Ahn, S. Han, and J. Lee, Phys. Rev. Lett. 98, 115503 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.115503
28.
28. E. V. Lavrov, F. Herklotz, and J. Weber, Phys. Rev. Lett. 102, 185502 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.185502
29.
29. Y. Kobayashi, et al., Nature Mater. 11, 507 (2012).
http://dx.doi.org/10.1038/nmat3302
30.
30. D. A. Shi, M. Saboktakin, and M. Stavola, Appl. Phys. Lett. 85, 5601 (2004).
http://dx.doi.org/10.1063/1.1832736
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4854355
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Optimized atomic configuration of (a) oxygen vacancy ( ), (b) interstitial hydrogen (H), and (c) hydrogen at oxygen site (H), where all structures are optimized with charge neutral state. Only a TiO layer that includes defect is depicted from the supercell model. Defect formation energies of (d) ( ) and (H), and (e) (H) and .

Image of FIG. 2.

Click to view

FIG. 2.

Optimized defect structures composed of (a) H molecule-like structure at site, two (b) asymmetrically and (c) symmetrically trapped H atoms at site. All structures are optimized with charge neutral state. The H–H bond lengths shown by (i) and (ii) are 1.67 and 1.64 Å, and the Ti–H bond lengths shown by (iii), (iv), and (v) are 1.75, 2.46, and 2.01 Å, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

Chemical bonding scheme for H atoms that occupy the site in SrTiO calculated with charge neutral supercells. (a) Perfect SrTiO crystal. (b) Two asymmetrically and (c) symmetrically introduced H atoms that passivate the dangling-bond of Ti-3 orbitals at the site. (d) One hydrogen atom that simply replaces an oxygen atom. (e) H molecule-like structure at the site. The decomposed charge densities for the occupied defect state in (2H), (2H)′, and (H) are shown at the bottom of the figure.

Image of FIG. 4.

Click to view

FIG. 4.

Defect-formation energies of two-hydrogen incorporation into site are compared with that of (H) + (H) and 2 × (H).

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4854355
2014-01-08
2014-04-17

Abstract

As a source of carrier electron, various configurations of hydrogen in SrTiO are searched by using first-principles calculations. The most stable form of hydrogen is found to be H, where doubly charged oxygen vacancy changes into singly charged . Most importantly, an additional H is found to be weakly trapped by , which completely neutralizes carrier electrons by forming . These unexpected behaviors of hydrogen, which can explain reported experimental results, expand the role of the hydrogen in carrier-control technology in transition-metal oxides.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4854355.html;jsessionid=26glekkk50udf.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4854355&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Diversity of hydrogen configuration and its roles in SrTiO3−δ
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4854355
10.1063/1.4854355
SEARCH_EXPAND_ITEM