1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4854375
1.
1. C. W. E. van Eijk, Phys. Med. Biol. 47, R85 (2002).
http://dx.doi.org/10.1088/0031-9155/47/8/201
2.
2. S. E. Derenzo, W. W. Moses, H. G. Jackson, B. T. Turko, J. L. Cahoon, A. B. Geyer, and T. Vuletich, IEEE Trans. Nucl. Sci. 36, 1084 (1989).
http://dx.doi.org/10.1109/23.34609
3.
3. H. Ishibashi, K. Shimizu, K. Susa, and S. Kubota, IEEE Trans. Nucl. Sci. 36(1), 170 (1989).
http://dx.doi.org/10.1109/23.34427
4.
4. C. L. Melcher, M. A. Spurrier, L. Eriksson, M. Eriksson, M. Schmand, G. Givens, R. Terry, T. Homant, and R. Nutt, IEEE Trans. Nucl. Sci. 50, 762 (2003).
http://dx.doi.org/10.1109/TNS.2003.814585
5.
5. D. W. Cooke, K. J. McClellan, B. L. Bennett, J. M. Roper, M. T. Whittaker, R. E. Muenchausen, and R. C. Sze, J. Appl. Phys. 88(12), 7360 (2000).
http://dx.doi.org/10.1063/1.1328775
6.
6. M. Nikl, Phys. Status Solidi A 202, 201 (2005).
http://dx.doi.org/10.1002/pssa.200460107
7.
7. H. Ogino, A. Yoshikawa, M. Nikl, K. Kamada, and T. Fukuda, J. Cryst. Growth 292, 239 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2006.04.021
8.
8. C. Dujardin, C. Mancini, D. Amans, G. Ledoux, D. Abler, E. Auffray, P. Lecoq, D. Perrodin, A. Petrosyan, and K. L. Ovanesyan, J. Appl. Phys. 108, 013510 (2010).
http://dx.doi.org/10.1063/1.3452358
9.
9. K. Kamada, T. Yanagida, T. Endo, K. Tsutumi, M. Yoshino, J. Kataoka, Y. Usuki, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, J. Cryst. Growth 352, 91 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2011.11.079
10.
10. A. M. Srivastava and C. R. Ronda, Luminescence: Theory and Applications (Wiley-VCH, Weinheim, Germany, 2007), Chap. 5.
11.
11. C. L. Wang, D. Solodovnikov, and K. G. Lynn, Phys. Rev. B 73, 233204 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.233204
12.
12. F. A. Selim, D. Solodovnikov, M. H. Weber, and K. G. Lynn, Appl. Phys. Lett. 91, 104105 (2007).
http://dx.doi.org/10.1063/1.2780119
13.
13. C. R. Stanek, K. J. McClellan, M. R. Levy, and R. W. Grimes, Phys. Status Solidi B 243, R75 (2006).
http://dx.doi.org/10.1002/pssb.200642355
14.
14. M. Kuklja, J. Phys.: Condens. Matter 12, 2953 (2000).
http://dx.doi.org/10.1088/0953-8984/12/13/307
15.
15. M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, Appl. Phys. Lett. 88, 141916 (2006).
http://dx.doi.org/10.1063/1.2191741
16.
16. M. Fasoli, A. Vedda, M. Nikl, C. Jiang, B. P. Uberuaga, D. A. Andersson, K. J. McClellan, and C. R. Stanek, Phys. Rev. B 84, 081102R (2011).
http://dx.doi.org/10.1103/PhysRevB.84.081102
17.
17. H. Ogino, A. Yoshikawa, M. Nikl, J. A. Mares, J. Shimoyama, and K. Kishio, J. Cryst. Growth 311, 908 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.09.146
18.
18. J. Ueda, K. Aishima, and S. Tanabe, Opt. Mater. 35(11), 1952 (2013).
http://dx.doi.org/10.1016/j.optmat.2012.11.016
19.
19. K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and Y. Yoshikawa, J. Phys. D: Appl. Phys. 44, 505104 (2011).
http://dx.doi.org/10.1088/0022-3727/44/50/505104
20.
20. M. Nikl, K. Kamada, S. Kurosawa, Y. Yokota, A. Yoshikawa, J. Pejchal, and V. Babin, Phys. Status Solidi C 10(2), 172 (2013).
http://dx.doi.org/10.1002/pssc.201200499
21.
21. Y. T. Wu, M. Nikl, V. Jary, and G. H. Ren, Chem. Phys. Lett. 574, 56 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.04.068
22.
22. J. L. Luo, Y. T. Wu, H. J. Zhang, and G. H. Ren, Opt. Mater. 36, 476 (2013).
http://dx.doi.org/10.1016/j.optmat.2013.10.012
23.
23. K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukobori, A. Yoshikawa, J. Pejchal, and M. Nikl, Cryst. Growth Des. 11, 4484 (2011).
http://dx.doi.org/10.1021/cg200694a
24.
24. J. A. Mares, M. Nikl, E. Mihokova, A. Beitlerova, A. Vedda, and C. D'Ambrosio, IEEE Trans. Nucl. Sci. 55, 1142 (2008).
http://dx.doi.org/10.1109/TNS.2008.922840
25.
25. Y. T. Wu, G. H. Ren, D. Z. Ding, F. Yang, and S. K. Pan, Appl. Phys. Lett. 100, 021904 (2012).
http://dx.doi.org/10.1063/1.3675881
26.
26. P. Dorenbos, J. Lumin. 134, 310 (2013).
http://dx.doi.org/10.1016/j.jlumin.2012.08.028
27.
27. P. Dorenbos, Chem. Mater. 17, 6452 (2005).
http://dx.doi.org/10.1021/cm051456o
28.
28. C. L. Melcher, S. Friedrich, S. P. Cramer, M. A. Spurrier, P. Szupryczynski, and R. Nutt, IEEE Trans. Nucl. Sci. 52, 1809 (2005).
http://dx.doi.org/10.1109/TNS.2005.856594
29.
29. D. Z. Ding, H. Feng, G. H. Ren, M. Nikl, L. S. Qin, S. K. Pan, and F. Yang, IEEE Trans. Nucl. Sci. 57, 1272 (2010).
http://dx.doi.org/10.1109/TNS.2009.2036351
30.
30. M. Zhuravleva, S. Friedrich, and C. L. Melcher, Appl. Phys. Lett. 101, 101902 (2012)
http://dx.doi.org/10.1063/1.4748168
31.
31. S. Blahuta, A. Bessiere, B. Viana, P. Dorenbos, and V. Ouspenski, IEEE Trans. Nucl. Sci. 60(4), 3134 (2013)
http://dx.doi.org/10.1109/TNS.2013.2269700
32.
32. Y. T. Wu, G. H. Ren, D. Z. Ding, F. Yang, and S. K. Pan, J. Mater. Chem. 21, 17805 (2011).
http://dx.doi.org/10.1039/c1jm14251h
33.
33. Y. T. Wu, G. H. Ren, D. Z. Ding, F. Yang, and S. K. Pan, CrystEngComm 14, 1998 (2012).
http://dx.doi.org/10.1039/c2ce06332h
34.
34. B. Ravel, Phys. Scr. 115, 1007 (2005).
http://dx.doi.org/10.1238/Physica.Topical.115a01007
35.
35. J. M. Ogiegło, A. Katelnikovas, A. Zych, T. Jüstel, A. Meijerink, and C. R. Ronda, J. Phys. Chem. A 117, 2479 (2013).
http://dx.doi.org/10.1021/jp309572p
36.
36. C. Mansuy, J. M. Nedelec, and R. Mahiou, J. Mater. Chem. 14, 3274 (2004).
http://dx.doi.org/10.1039/b405402d
37.
37. Z. H. Wu, R. E. Benfield, L. Guo, H. J. Li, Q. L. Yang, D. Grandjean, Q. S. Li, and H. S. Zhu, J. Phys. Condens. Matter 13, 5269 (2001).
http://dx.doi.org/10.1088/0953-8984/13/22/320
38.
38. S. Liu, X. Feng, Z. Zhou, M. Nikl, Y. Shi, and Y. Pan, “Effect of Mg2+ co-doping on the scintillation performance of LuGA:Ce ceramics,” Phys. Status Solidi (RRL) (published online).
http://dx.doi.org/10.1002/pssr.201308199
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4854375
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

X-ray excited luminescence spectra of Lu(GaAl)O:Ce (y = 0, 1, 2, 3), (LuGd)(GaAl)O:Ce (y = 1, 2, 3, 4), and (LuGd)(GaAl)O:Ce (x = 0, 1, 2, 3) (a); the integrated intensity trend as a function of Ga3+ or Gd3+ content (b).

Image of FIG. 2.

Click to view

FIG. 2.

Ce L-edge XANES spectra of the Lu(GaAl)O:Ce (y = 0, 1, 2, 3) (a); LuGd(GaAl)O:Ce (y = 1, 2, 3, 4) (b); (LuGd)(GaAl)O (x = 0, 1, 2, 3) (c). The XANES spectra of the Ce4+ and Ce3+ standard samples recorded at Ce L-edge were used as references (d).

Image of FIG. 3.

Click to view

FIG. 3.

The Ce3+ and Ce4+ component fitting according to the Ce L-edge XANES spectra of LuAlO (a); LuGaAlO:Ce (b); LuGaAlO:Ce (c); and LuGaAlO:Ce (d). The data are depicted by solid black lines; the total fit is indicated by the solid red line, the Ce3+ fit component is indicated by a dotted-dashed blue line, and the Ce4+ fit component is indicated by a dotted green line.

Image of FIG. 4.

Click to view

FIG. 4.

The Ce valence fraction (%) with varying Ga3+ (a) and Gd3+ (b) admixture content; average Ce valence state as a function of Ga3+ (c), and Gd3+ (d) admixture content. Lines are only to guide the eye. The error bars listed in Table I are not added in the figures for clear observation.

Image of FIG. 5.

Click to view

FIG. 5.

The value of E as a function of Ga admixture content in Gd(GaAl)O:Ce (y = 0, 1, 2, 3, 4) (a); the schematic electronic structure diagram with defined optical parameters (b).

Tables

Generic image for table

Click to view

TABLE I.

Linear component fitting results for the Ce3+ and Ce4+contents in (Lu,Gd)(Ga,Al)O:Ce polycrystalline powders, and the corresponding average cerium valence.

Generic image for table

Click to view

TABLE II.

Experimental data on the 4f-5d excitation wavelength of Ce3+ (E), energy between CB and 5d lowest level (E), excitation creation energy (E) and bandgap (E), and derived Fermi energy (E), energy separation between Ce3+ 4f ground state and valence band (E) and E in Gd(Al,Ga)O compounds. The spectroscopic data of E, E, and E are extracted from Ref. 26 . All parameters are in eV.

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4854375
2014-01-02
2014-04-16

Abstract

In the recent successful improvement of scintillation efficiency in LuAlO:Ce driven by Ga3+ and Gd3+ admixture, the “band-gap engineering” and energy level positioning have been considered the valid strategies so far. This study revealed that this improvement was also associated with the cerium valence instability along with the changes of chemical composition. By utilizing X-ray absorption near edge spectroscopy technique, tuning the Ce3+/Ce4+ ratio by Ga3+ admixture was evidenced, while it was kept nearly stable with the Gd3+ admixture. Ce valence instability and Ce3+/Ce4+ ratio in multicomponent garnets can be driven by the energy separation between 4f ground state of Ce3+ and Fermi level.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4854375.html;jsessionid=7k2i2w8ibfxq.x-aip-live-01?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4854375&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4854375
10.1063/1.4854375
SEARCH_EXPAND_ITEM