1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4854375
1.
1. C. W. E. van Eijk, Phys. Med. Biol. 47, R85 (2002).
http://dx.doi.org/10.1088/0031-9155/47/8/201
2.
2. S. E. Derenzo, W. W. Moses, H. G. Jackson, B. T. Turko, J. L. Cahoon, A. B. Geyer, and T. Vuletich, IEEE Trans. Nucl. Sci. 36, 1084 (1989).
http://dx.doi.org/10.1109/23.34609
3.
3. H. Ishibashi, K. Shimizu, K. Susa, and S. Kubota, IEEE Trans. Nucl. Sci. 36(1), 170 (1989).
http://dx.doi.org/10.1109/23.34427
4.
4. C. L. Melcher, M. A. Spurrier, L. Eriksson, M. Eriksson, M. Schmand, G. Givens, R. Terry, T. Homant, and R. Nutt, IEEE Trans. Nucl. Sci. 50, 762 (2003).
http://dx.doi.org/10.1109/TNS.2003.814585
5.
5. D. W. Cooke, K. J. McClellan, B. L. Bennett, J. M. Roper, M. T. Whittaker, R. E. Muenchausen, and R. C. Sze, J. Appl. Phys. 88(12), 7360 (2000).
http://dx.doi.org/10.1063/1.1328775
6.
6. M. Nikl, Phys. Status Solidi A 202, 201 (2005).
http://dx.doi.org/10.1002/pssa.200460107
7.
7. H. Ogino, A. Yoshikawa, M. Nikl, K. Kamada, and T. Fukuda, J. Cryst. Growth 292, 239 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2006.04.021
8.
8. C. Dujardin, C. Mancini, D. Amans, G. Ledoux, D. Abler, E. Auffray, P. Lecoq, D. Perrodin, A. Petrosyan, and K. L. Ovanesyan, J. Appl. Phys. 108, 013510 (2010).
http://dx.doi.org/10.1063/1.3452358
9.
9. K. Kamada, T. Yanagida, T. Endo, K. Tsutumi, M. Yoshino, J. Kataoka, Y. Usuki, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, J. Cryst. Growth 352, 91 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2011.11.079
10.
10. A. M. Srivastava and C. R. Ronda, Luminescence: Theory and Applications (Wiley-VCH, Weinheim, Germany, 2007), Chap. 5.
11.
11. C. L. Wang, D. Solodovnikov, and K. G. Lynn, Phys. Rev. B 73, 233204 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.233204
12.
12. F. A. Selim, D. Solodovnikov, M. H. Weber, and K. G. Lynn, Appl. Phys. Lett. 91, 104105 (2007).
http://dx.doi.org/10.1063/1.2780119
13.
13. C. R. Stanek, K. J. McClellan, M. R. Levy, and R. W. Grimes, Phys. Status Solidi B 243, R75 (2006).
http://dx.doi.org/10.1002/pssb.200642355
14.
14. M. Kuklja, J. Phys.: Condens. Matter 12, 2953 (2000).
http://dx.doi.org/10.1088/0953-8984/12/13/307
15.
15. M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, Appl. Phys. Lett. 88, 141916 (2006).
http://dx.doi.org/10.1063/1.2191741
16.
16. M. Fasoli, A. Vedda, M. Nikl, C. Jiang, B. P. Uberuaga, D. A. Andersson, K. J. McClellan, and C. R. Stanek, Phys. Rev. B 84, 081102R (2011).
http://dx.doi.org/10.1103/PhysRevB.84.081102
17.
17. H. Ogino, A. Yoshikawa, M. Nikl, J. A. Mares, J. Shimoyama, and K. Kishio, J. Cryst. Growth 311, 908 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.09.146
18.
18. J. Ueda, K. Aishima, and S. Tanabe, Opt. Mater. 35(11), 1952 (2013).
http://dx.doi.org/10.1016/j.optmat.2012.11.016
19.
19. K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and Y. Yoshikawa, J. Phys. D: Appl. Phys. 44, 505104 (2011).
http://dx.doi.org/10.1088/0022-3727/44/50/505104
20.
20. M. Nikl, K. Kamada, S. Kurosawa, Y. Yokota, A. Yoshikawa, J. Pejchal, and V. Babin, Phys. Status Solidi C 10(2), 172 (2013).
http://dx.doi.org/10.1002/pssc.201200499
21.
21. Y. T. Wu, M. Nikl, V. Jary, and G. H. Ren, Chem. Phys. Lett. 574, 56 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.04.068
22.
22. J. L. Luo, Y. T. Wu, H. J. Zhang, and G. H. Ren, Opt. Mater. 36, 476 (2013).
http://dx.doi.org/10.1016/j.optmat.2013.10.012
23.
23. K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukobori, A. Yoshikawa, J. Pejchal, and M. Nikl, Cryst. Growth Des. 11, 4484 (2011).
http://dx.doi.org/10.1021/cg200694a
24.
24. J. A. Mares, M. Nikl, E. Mihokova, A. Beitlerova, A. Vedda, and C. D'Ambrosio, IEEE Trans. Nucl. Sci. 55, 1142 (2008).
http://dx.doi.org/10.1109/TNS.2008.922840
25.
25. Y. T. Wu, G. H. Ren, D. Z. Ding, F. Yang, and S. K. Pan, Appl. Phys. Lett. 100, 021904 (2012).
http://dx.doi.org/10.1063/1.3675881
26.
26. P. Dorenbos, J. Lumin. 134, 310 (2013).
http://dx.doi.org/10.1016/j.jlumin.2012.08.028
27.
27. P. Dorenbos, Chem. Mater. 17, 6452 (2005).
http://dx.doi.org/10.1021/cm051456o
28.
28. C. L. Melcher, S. Friedrich, S. P. Cramer, M. A. Spurrier, P. Szupryczynski, and R. Nutt, IEEE Trans. Nucl. Sci. 52, 1809 (2005).
http://dx.doi.org/10.1109/TNS.2005.856594
29.
29. D. Z. Ding, H. Feng, G. H. Ren, M. Nikl, L. S. Qin, S. K. Pan, and F. Yang, IEEE Trans. Nucl. Sci. 57, 1272 (2010).
http://dx.doi.org/10.1109/TNS.2009.2036351
30.
30. M. Zhuravleva, S. Friedrich, and C. L. Melcher, Appl. Phys. Lett. 101, 101902 (2012)
http://dx.doi.org/10.1063/1.4748168
31.
31. S. Blahuta, A. Bessiere, B. Viana, P. Dorenbos, and V. Ouspenski, IEEE Trans. Nucl. Sci. 60(4), 3134 (2013)
http://dx.doi.org/10.1109/TNS.2013.2269700
32.
32. Y. T. Wu, G. H. Ren, D. Z. Ding, F. Yang, and S. K. Pan, J. Mater. Chem. 21, 17805 (2011).
http://dx.doi.org/10.1039/c1jm14251h
33.
33. Y. T. Wu, G. H. Ren, D. Z. Ding, F. Yang, and S. K. Pan, CrystEngComm 14, 1998 (2012).
http://dx.doi.org/10.1039/c2ce06332h
34.
34. B. Ravel, Phys. Scr. 115, 1007 (2005).
http://dx.doi.org/10.1238/Physica.Topical.115a01007
35.
35. J. M. Ogiegło, A. Katelnikovas, A. Zych, T. Jüstel, A. Meijerink, and C. R. Ronda, J. Phys. Chem. A 117, 2479 (2013).
http://dx.doi.org/10.1021/jp309572p
36.
36. C. Mansuy, J. M. Nedelec, and R. Mahiou, J. Mater. Chem. 14, 3274 (2004).
http://dx.doi.org/10.1039/b405402d
37.
37. Z. H. Wu, R. E. Benfield, L. Guo, H. J. Li, Q. L. Yang, D. Grandjean, Q. S. Li, and H. S. Zhu, J. Phys. Condens. Matter 13, 5269 (2001).
http://dx.doi.org/10.1088/0953-8984/13/22/320
38.
38. S. Liu, X. Feng, Z. Zhou, M. Nikl, Y. Shi, and Y. Pan, “Effect of Mg2+ co-doping on the scintillation performance of LuGA:Ce ceramics,” Phys. Status Solidi (RRL) (published online).
http://dx.doi.org/10.1002/pssr.201308199
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4854375
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4854375
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4854375
2014-01-02
2014-09-19

Abstract

In the recent successful improvement of scintillation efficiency in LuAlO:Ce driven by Ga3+ and Gd3+ admixture, the “band-gap engineering” and energy level positioning have been considered the valid strategies so far. This study revealed that this improvement was also associated with the cerium valence instability along with the changes of chemical composition. By utilizing X-ray absorption near edge spectroscopy technique, tuning the Ce3+/Ce4+ ratio by Ga3+ admixture was evidenced, while it was kept nearly stable with the Gd3+ admixture. Ce valence instability and Ce3+/Ce4+ ratio in multicomponent garnets can be driven by the energy separation between 4f ground state of Ce3+ and Fermi level.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4854375.html;jsessionid=2d97d5kblxh4o.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4854375&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4854375
10.1063/1.4854375
SEARCH_EXPAND_ITEM