Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. W. E. van Eijk, Phys. Med. Biol. 47, R85 (2002).
2. S. E. Derenzo, W. W. Moses, H. G. Jackson, B. T. Turko, J. L. Cahoon, A. B. Geyer, and T. Vuletich, IEEE Trans. Nucl. Sci. 36, 1084 (1989).
3. H. Ishibashi, K. Shimizu, K. Susa, and S. Kubota, IEEE Trans. Nucl. Sci. 36(1), 170 (1989).
4. C. L. Melcher, M. A. Spurrier, L. Eriksson, M. Eriksson, M. Schmand, G. Givens, R. Terry, T. Homant, and R. Nutt, IEEE Trans. Nucl. Sci. 50, 762 (2003).
5. D. W. Cooke, K. J. McClellan, B. L. Bennett, J. M. Roper, M. T. Whittaker, R. E. Muenchausen, and R. C. Sze, J. Appl. Phys. 88(12), 7360 (2000).
6. M. Nikl, Phys. Status Solidi A 202, 201 (2005).
7. H. Ogino, A. Yoshikawa, M. Nikl, K. Kamada, and T. Fukuda, J. Cryst. Growth 292, 239 (2006).
8. C. Dujardin, C. Mancini, D. Amans, G. Ledoux, D. Abler, E. Auffray, P. Lecoq, D. Perrodin, A. Petrosyan, and K. L. Ovanesyan, J. Appl. Phys. 108, 013510 (2010).
9. K. Kamada, T. Yanagida, T. Endo, K. Tsutumi, M. Yoshino, J. Kataoka, Y. Usuki, Y. Fujimoto, A. Fukabori, and A. Yoshikawa, J. Cryst. Growth 352, 91 (2012).
10. A. M. Srivastava and C. R. Ronda, Luminescence: Theory and Applications (Wiley-VCH, Weinheim, Germany, 2007), Chap. 5.
11. C. L. Wang, D. Solodovnikov, and K. G. Lynn, Phys. Rev. B 73, 233204 (2006).
12. F. A. Selim, D. Solodovnikov, M. H. Weber, and K. G. Lynn, Appl. Phys. Lett. 91, 104105 (2007).
13. C. R. Stanek, K. J. McClellan, M. R. Levy, and R. W. Grimes, Phys. Status Solidi B 243, R75 (2006).
14. M. Kuklja, J. Phys.: Condens. Matter 12, 2953 (2000).
15. M. Nikl, J. Pejchal, E. Mihokova, J. A. Mares, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, and C. D’Ambrosio, Appl. Phys. Lett. 88, 141916 (2006).
16. M. Fasoli, A. Vedda, M. Nikl, C. Jiang, B. P. Uberuaga, D. A. Andersson, K. J. McClellan, and C. R. Stanek, Phys. Rev. B 84, 081102R (2011).
17. H. Ogino, A. Yoshikawa, M. Nikl, J. A. Mares, J. Shimoyama, and K. Kishio, J. Cryst. Growth 311, 908 (2009).
18. J. Ueda, K. Aishima, and S. Tanabe, Opt. Mater. 35(11), 1952 (2013).
19. K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, and Y. Yoshikawa, J. Phys. D: Appl. Phys. 44, 505104 (2011).
20. M. Nikl, K. Kamada, S. Kurosawa, Y. Yokota, A. Yoshikawa, J. Pejchal, and V. Babin, Phys. Status Solidi C 10(2), 172 (2013).
21. Y. T. Wu, M. Nikl, V. Jary, and G. H. Ren, Chem. Phys. Lett. 574, 56 (2013).
22. J. L. Luo, Y. T. Wu, H. J. Zhang, and G. H. Ren, Opt. Mater. 36, 476 (2013).
23. K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukobori, A. Yoshikawa, J. Pejchal, and M. Nikl, Cryst. Growth Des. 11, 4484 (2011).
24. J. A. Mares, M. Nikl, E. Mihokova, A. Beitlerova, A. Vedda, and C. D'Ambrosio, IEEE Trans. Nucl. Sci. 55, 1142 (2008).
25. Y. T. Wu, G. H. Ren, D. Z. Ding, F. Yang, and S. K. Pan, Appl. Phys. Lett. 100, 021904 (2012).
26. P. Dorenbos, J. Lumin. 134, 310 (2013).
27. P. Dorenbos, Chem. Mater. 17, 6452 (2005).
28. C. L. Melcher, S. Friedrich, S. P. Cramer, M. A. Spurrier, P. Szupryczynski, and R. Nutt, IEEE Trans. Nucl. Sci. 52, 1809 (2005).
29. D. Z. Ding, H. Feng, G. H. Ren, M. Nikl, L. S. Qin, S. K. Pan, and F. Yang, IEEE Trans. Nucl. Sci. 57, 1272 (2010).
30. M. Zhuravleva, S. Friedrich, and C. L. Melcher, Appl. Phys. Lett. 101, 101902 (2012)
31. S. Blahuta, A. Bessiere, B. Viana, P. Dorenbos, and V. Ouspenski, IEEE Trans. Nucl. Sci. 60(4), 3134 (2013)
32. Y. T. Wu, G. H. Ren, D. Z. Ding, F. Yang, and S. K. Pan, J. Mater. Chem. 21, 17805 (2011).
33. Y. T. Wu, G. H. Ren, D. Z. Ding, F. Yang, and S. K. Pan, CrystEngComm 14, 1998 (2012).
34. B. Ravel, Phys. Scr. 115, 1007 (2005).
35. J. M. Ogiegło, A. Katelnikovas, A. Zych, T. Jüstel, A. Meijerink, and C. R. Ronda, J. Phys. Chem. A 117, 2479 (2013).
36. C. Mansuy, J. M. Nedelec, and R. Mahiou, J. Mater. Chem. 14, 3274 (2004).
37. Z. H. Wu, R. E. Benfield, L. Guo, H. J. Li, Q. L. Yang, D. Grandjean, Q. S. Li, and H. S. Zhu, J. Phys. Condens. Matter 13, 5269 (2001).
38. S. Liu, X. Feng, Z. Zhou, M. Nikl, Y. Shi, and Y. Pan, “Effect of Mg2+ co-doping on the scintillation performance of LuGA:Ce ceramics,” Phys. Status Solidi (RRL) (published online).

Data & Media loading...


Article metrics loading...



In the recent successful improvement of scintillation efficiency in LuAlO:Ce driven by Ga3+ and Gd3+ admixture, the “band-gap engineering” and energy level positioning have been considered the valid strategies so far. This study revealed that this improvement was also associated with the cerium valence instability along with the changes of chemical composition. By utilizing X-ray absorption near edge spectroscopy technique, tuning the Ce3+/Ce4+ ratio by Ga3+ admixture was evidenced, while it was kept nearly stable with the Gd3+ admixture. Ce valence instability and Ce3+/Ce4+ ratio in multicomponent garnets can be driven by the energy separation between 4f ground state of Ce3+ and Fermi level.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd