1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Research Update: Molecular electronics: The single-molecule switch and transistor
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4855775
1.
1. A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974).
http://dx.doi.org/10.1016/0009-2614(74)85031-1
2.
2. R. L. McCreery, Chem. Mater. 16, 4477 (2004).
http://dx.doi.org/10.1021/cm049517q
3.
3. H. B. Akkerman and B. de Boer, J. Phys. Condens. Matter 20, 013001 (2008).
http://dx.doi.org/10.1088/0953-8984/20/01/013001
4.
4. S. Karthäuser, J. Phys. Condens. Matter 23, 013001 (2011).
http://dx.doi.org/10.1088/0953-8984/23/1/013001
5.
5. S. Guo, G. Zhou, and N. J. Tao, Nano Lett. 13, 4326 (2013).
http://dx.doi.org/10.1021/nl4021073
6.
6. K. W. Hipps, Science 294, 536 (2001).
http://dx.doi.org/10.1126/science.1065708
7.
7. H. J. W. Zandvliet, Chimia 66(1–2), 5255 (2012).
http://dx.doi.org/10.2533/chimia.2012.52
8.
8. R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J. M. van Ruitenbeek, Nature (London) 419(6910), 906909 (2002).
http://dx.doi.org/10.1038/nature01103
9.
9. L. T. Cai, M. A. Cabassi, H. Yoon, O. M. Cabarcos, C. L. McGuiness, A. K. Flatt, D. L. Allara, J. M. Tour, and T. S. Mayer, Nano Lett. 5, 2365 (2005).
http://dx.doi.org/10.1021/nl051219k
10.
10. J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and H. von Löhneysen, Phys. Rev. Lett. 88, 176804 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.176804
11.
11. W. Haiss, C. S. Wang, I. Grace, A. S. Batsanov, D. J. Schiffrin, S. J. Higgins, M. R. Bryce, C. J. Lambert, and R. J. Nichols, Nat. Mater. 5, 995 (2006).
http://dx.doi.org/10.1038/nmat1781
12.
12. L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Nano Lett. 6 (3), 458 (2006).
http://dx.doi.org/10.1021/nl052373+
13.
13. G. Meszaros, S. Kronholz, S. Karthäuser, D. Mayer, and T. Wandlowski, Appl. Phys. A 87, 569 (2007).
http://dx.doi.org/10.1007/s00339-007-3903-2
14.
14. R. Temirov, A. Lassise, F. B. Anders, and F. S. Tautz, Nanotechnology 19, 065401 (2008).
http://dx.doi.org/10.1088/0957-4484/19/6/065401
15.
15. D. Kockmann, B. Poelsema, and H. J. W. Zandvliet, Nano Lett. 9, 1147 (2009).
http://dx.doi.org/10.1021/nl803767c
16.
16. L. Lafferentz, F. Ample, H. Yu, S. Hecht, C. Joachim, and L. Grill, Science 323, 1193 (2009).
http://dx.doi.org/10.1126/science.1168255
17.
17. E. Leary, M. T. Gonzalez, C. van der Pol, M. R. Bryce, S. Filippone, N. Martin, G. Rubio-Bollinger, and N. Agrait, Nano Lett. 11, 2236 (2011).
http://dx.doi.org/10.1021/nl200294s
18.
18. C. Toher, R. Temirov, A. Greuling, F. Pump, M. Kaczmarski, G. Cuniberti, M. Rohlfing, and F. S. Tautz, Phys. Rev. B 83, 155402 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155402
19.
19. R. Heimbuch, H. R. Wu, A. Kumar, B. Poelsema, P. Schon, J. Vancso, and H. J. W. Zandvliet, Phys. Rev. B 86, 075446 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075446
20.
20. A. Kumar, R. Heimbuch, B. Poelsema, and H. J. W. Zandvliet, J. Phys. Condens. Matter 24, 082201 (2012).
http://dx.doi.org/10.1088/0953-8984/24/8/082201
21.
21. C. Bruot, J. Hihath, and N. J. Tao, Nat. Nanotechnol. 7, 35 (2012).
http://dx.doi.org/10.1038/nnano.2011.212
22.
22. M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulic, Nat. Nanotechnol. 8, 282 (2013).
http://dx.doi.org/10.1038/nnano.2013.26
23.
23. D. Xiang, H. Jeong, D. Kim, T. Lee, Y. J. Cheng, Q. L. Wang, and D. Mayer, Nano Lett. 13, 2809 (2013).
http://dx.doi.org/10.1021/nl401067x
24.
24. T. Huang, J. Zhao, M. Peng, A. A. Popov, S. F. Yang, L. Dunsch, and H. Petek, Nano Lett. 11, 5327 (2011).
http://dx.doi.org/10.1021/nl2028409
25.
25. C. M. Guedon, H. Valkenier, T. Markussen, K. S. Thygesen, J. C. Hummelen, and S. J. van der Molen, Nat. Nanotechnology 7, 305 (2012).
http://dx.doi.org/10.1038/nnano.2012.37
26.
26. G. Wang, T. W. Kim, H. Lee and T. Lee, Phys. Rev. B 76, 205320 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.205320
27.
27. H. J. W. Zandvliet, Phys. Rep. 388, 1 (2003).
http://dx.doi.org/10.1016/j.physrep.2003.09.001
28.
28. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision A.02, Gaussian Inc., Wallingford, CT, 2009.
29.
29. W. Haiss, S. Martin, E. Leary, H. van Zalinge, S. J. Higgins, L. Bouffier, and R. J. Nichols, J. Phys. Chem. C 113, 5823 (2009).
http://dx.doi.org/10.1021/jp811142d
30.
30. M. A. F. Addato, A. A. Rubert, G. A. Benitez, M. H. Fonticelli, J. Carrasco, P. Carro, and R. C. Salvarezza, J. Phys. Chem. C 115, 17788 (2011).
http://dx.doi.org/10.1021/jp201390m
31.
31. K. Sotthewes, R. Heimbuch, and H. J. W. Zandvliet, J. Chem. Phys. 139, 214709 (2013).
http://dx.doi.org/10.1063/1.4835675
32.
32. D. Gruzman, A. Karton and J. M. L. Martin, J. Phys. Chem. A 113, 11974 (2009).
http://dx.doi.org/10.1021/jp903640h
33.
33. J. G. Simmons, J. Appl. Phys. 34, 2581 (1963).
http://dx.doi.org/10.1063/1.1729774
34.
34. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).
http://dx.doi.org/10.1063/1.1702682
35.
35. H. B. Akkerman, R. C. G. Naber, B. Jongbloed, P. A. van Hal, P. W. M. Blom, D. M. de Leeuw, and B. de Boer, Proc. Natl. Acad. Sci. U.S.A. 104, 11161 (2007).
http://dx.doi.org/10.1073/pnas.0701472104
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4855775
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4855775
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4855775
2014-01-02
2014-11-29

Abstract

In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4855775.html;jsessionid=1k2fmn0as5b43.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4855775&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Research Update: Molecular electronics: The single-molecule switch and transistor
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4855775
10.1063/1.4855775
SEARCH_EXPAND_ITEM