Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974).
2. R. L. McCreery, Chem. Mater. 16, 4477 (2004).
3. H. B. Akkerman and B. de Boer, J. Phys. Condens. Matter 20, 013001 (2008).
4. S. Karthäuser, J. Phys. Condens. Matter 23, 013001 (2011).
5. S. Guo, G. Zhou, and N. J. Tao, Nano Lett. 13, 4326 (2013).
6. K. W. Hipps, Science 294, 536 (2001).
7. H. J. W. Zandvliet, Chimia 66(1–2), 5255 (2012).
8. R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J. M. van Ruitenbeek, Nature (London) 419(6910), 906909 (2002).
9. L. T. Cai, M. A. Cabassi, H. Yoon, O. M. Cabarcos, C. L. McGuiness, A. K. Flatt, D. L. Allara, J. M. Tour, and T. S. Mayer, Nano Lett. 5, 2365 (2005).
10. J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and H. von Löhneysen, Phys. Rev. Lett. 88, 176804 (2002).
11. W. Haiss, C. S. Wang, I. Grace, A. S. Batsanov, D. J. Schiffrin, S. J. Higgins, M. R. Bryce, C. J. Lambert, and R. J. Nichols, Nat. Mater. 5, 995 (2006).
12. L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Nano Lett. 6 (3), 458 (2006).
13. G. Meszaros, S. Kronholz, S. Karthäuser, D. Mayer, and T. Wandlowski, Appl. Phys. A 87, 569 (2007).
14. R. Temirov, A. Lassise, F. B. Anders, and F. S. Tautz, Nanotechnology 19, 065401 (2008).
15. D. Kockmann, B. Poelsema, and H. J. W. Zandvliet, Nano Lett. 9, 1147 (2009).
16. L. Lafferentz, F. Ample, H. Yu, S. Hecht, C. Joachim, and L. Grill, Science 323, 1193 (2009).
17. E. Leary, M. T. Gonzalez, C. van der Pol, M. R. Bryce, S. Filippone, N. Martin, G. Rubio-Bollinger, and N. Agrait, Nano Lett. 11, 2236 (2011).
18. C. Toher, R. Temirov, A. Greuling, F. Pump, M. Kaczmarski, G. Cuniberti, M. Rohlfing, and F. S. Tautz, Phys. Rev. B 83, 155402 (2011).
19. R. Heimbuch, H. R. Wu, A. Kumar, B. Poelsema, P. Schon, J. Vancso, and H. J. W. Zandvliet, Phys. Rev. B 86, 075446 (2012).
20. A. Kumar, R. Heimbuch, B. Poelsema, and H. J. W. Zandvliet, J. Phys. Condens. Matter 24, 082201 (2012).
21. C. Bruot, J. Hihath, and N. J. Tao, Nat. Nanotechnol. 7, 35 (2012).
22. M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulic, Nat. Nanotechnol. 8, 282 (2013).
23. D. Xiang, H. Jeong, D. Kim, T. Lee, Y. J. Cheng, Q. L. Wang, and D. Mayer, Nano Lett. 13, 2809 (2013).
24. T. Huang, J. Zhao, M. Peng, A. A. Popov, S. F. Yang, L. Dunsch, and H. Petek, Nano Lett. 11, 5327 (2011).
25. C. M. Guedon, H. Valkenier, T. Markussen, K. S. Thygesen, J. C. Hummelen, and S. J. van der Molen, Nat. Nanotechnology 7, 305 (2012).
26. G. Wang, T. W. Kim, H. Lee and T. Lee, Phys. Rev. B 76, 205320 (2007).
27. H. J. W. Zandvliet, Phys. Rep. 388, 1 (2003).
28. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision A.02, Gaussian Inc., Wallingford, CT, 2009.
29. W. Haiss, S. Martin, E. Leary, H. van Zalinge, S. J. Higgins, L. Bouffier, and R. J. Nichols, J. Phys. Chem. C 113, 5823 (2009).
30. M. A. F. Addato, A. A. Rubert, G. A. Benitez, M. H. Fonticelli, J. Carrasco, P. Carro, and R. C. Salvarezza, J. Phys. Chem. C 115, 17788 (2011).
31. K. Sotthewes, R. Heimbuch, and H. J. W. Zandvliet, J. Chem. Phys. 139, 214709 (2013).
32. D. Gruzman, A. Karton and J. M. L. Martin, J. Phys. Chem. A 113, 11974 (2009).
33. J. G. Simmons, J. Appl. Phys. 34, 2581 (1963).
34. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).
35. H. B. Akkerman, R. C. G. Naber, B. Jongbloed, P. A. van Hal, P. W. M. Blom, D. M. de Leeuw, and B. de Boer, Proc. Natl. Acad. Sci. U.S.A. 104, 11161 (2007).

Data & Media loading...


Article metrics loading...



In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd