Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. d. M. Donega, Chem. Soc. Rev. 40(3), 15121546 (2011).
2. A. P. Alivisatos, Science 271(5251), 933937 (1996).
3. A. Rogach, Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications (Springer, 2008).
4. S. Gupta, O. Zhovtiuk, A. Vaneski, Y.-C. Lin, W.-C. Chou, S. V. Kershaw, and A. L. Rogach, Part. Part. Syst. Charact. 30(4), 346354 (2013).
5. J. B. Delehanty, H. Mattoussi, and I. L. Medintz, Anal. Bioanal. Chem. 393(4), 10911105 (2009).
6. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science 307(5709), 538544 (2005).
7. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, Nat. Biotechnol. 22(8), 969976 (2004).
8. S. Nizamoglu, E. Mutlugun, O. Akyuz, N. K. Perkgoz, H. V. Demir, L. Liebscher, S. Sapra, N. Gaponik, and A. Eychmüller, New J. Phys. 10(2), 023026 (2008).
9. H. V. Demir, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, and A. Eychmüller, Nanotoday 6(6), 632647 (2011).
10. T. Erdem and V. Demir Hilmi, Nanophotonics 2, 57 (2013).
11. S. Rühle, M. Shalom, and A. Zaban, ChemPhysChem 11(11), 22902304 (2010).
12. A. Nozik, Physica E 14(1), 115120 (2002).
13. P. V. Kamat, J. Phys. Chem. C 112(48), 1873718753 (2008).
14. F. A. Frame, E. C. Carroll, D. S. Larsen, M. Sarahan, N. D. Browning, and F. E. Osterloh, Chem. Commun. (Cambridge) (19), 22062208 (2008).
15. L. Amirav and A. P. Alivisatos, J. Phys. Chem. Lett. 1(7), 10511054 (2010).
16. Y. Shemesh, J. E. Macdonald, G. Menagen and U. Banin, Angew. Chem., Int. Ed. 50(5), 11851189 (2011).
17. Y. Li, Y. Hu, S. Peng, G. Lu, and S. Li, J. Phys. Chem. C 113(21), 93529358 (2009).
18. M. L. Tang, D. C. Grauer, B. Lassalle-Kaiser, V. K. Yachandra, L. Amirav, J. R. Long, J. Yano, and A. P. Alivisatos, Angew. Chem. 123(43), 1038510389 (2011).
19. M. Berr, A. Vaneski, A. S. Susha, J. Rodriguez-Fernandez, M. Doblinger, F. Jackel, A. L. Rogach, and J. Feldmann, Appl. Phys. Lett. 97(9), 093108 (2010).
20. J. Huang, K. L. Mulfort, P. Du, and L. X. Chen, J. Am. Chem. Soc. 134(40), 1647216475 (2012).
21. K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, Nano Lett. 11(7), 29192926 (2011).
22. T. O’Connor, M. S. Panov, A. Mereshchenko, A. N. Tarnovsky, R. Lorek, D. Perera, G. Diederich, S. Lambright, P. Moroz, and M. Zamkov, ACS Nano 6(9), 81568165 (2012).
23. M. J. Berr, F. F. Schweinberger, M. Döblinger, K. E. Sanwald, C. Wolff, J. Breimeier, A. S. Crampton, C. J. Ridge, M. Tschurl, U. Heiz, F. Jäckel, and J. Feldmann, Nano Lett. 12(11), 59035906 (2012).
24. J. U. Bang, S. J. Lee, J. S. Jang, W. Choi, and H. Song, J. Phys. Chem. Lett. 3(24), 37813785 (2012).
25. Z. Khan, T. R. Chetia, A. K. Vardhaman, D. Barpuzary, C. V. Sastri, and M. Qureshi, RSC Adv. 2(32), 1212212128 (2012).
26. Z. Han, F. Qiu, R. Eisenberg, P. L. Holland, and T. D. Krauss, Science 338(6112), 13211324 (2012).
27. K. A. Brown, M. B. Wilker, M. Boehm, G. Dukovic, and P. W. King, J. Am. Chem. Soc. 134(12), 56275636 (2012).
28. M. Sakamoto, A. Xiong, R. Kanakubo, T. Ikeda, T. Yoshinaga, K. Maeda, K. Domen, and T. Teranishi, Chem. Lett. 41(10), 13251327 (2012).
29. M. J. Berr, P. Wagner, S. Fischbach, A. Vaneski, J. Schneider, A. S. Susha, A. L. Rogach, F. Jackel, and J. Feldmann, Appl. Phys. Lett. 100(22), 223903223903 (2012).
30. M. J. Berr, A. Vaneski, C. Mauser, S. Fischbach, A. S. Susha, A. L. Rogach, F. Jäckel, and J. Feldmann, Small 8(2), 291297 (2012).
31. H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, Chem. Soc. Rev. 41(17), 56545671 (2012).
32. X. Chen, C. Li, M. Gratzel, R. Kostecki, and S. S. Mao, Chem. Soc. Rev. 41(23), 79097937 (2012).
33. M. Graetzel, Acc. Chem. Res. 14(12), 376384 (1981).
34. A. Henglein, J. Phys. Chem. 86 (13), 22912293 (1982).
35. Z. Khan, M. Khannam, N. Vinothkumar, M. De, and M. Qureshi, J. Mater. Chem. 22(24), 1209012095 (2012).
36. M. Matsumura, S. Furukawa, Y. Saho, and H. Tsubomura, J. Phys. Chem. 89(8), 13271329 (1985).
37. J. F. Reber and M. Rusek, J. Phys. Chem. 90(5), 824834 (1986).
38. W. Wang and F. Bai, ChemPhysChem 4(7), 761763 (2003).
39. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller, and H. Weller, J. Phys. Chem. B 103(16), 30653069 (1999).
40. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Nature Mater. 2(6), 382385 (2003).
41. D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. Paul Alivisatos, Nature (London) 430(6996), 190195 (2004).
42. D. V. Talapin, J. H. Nelson, E. V. Shevchenko, S. Aloni, B. Sadtler, and A. P. Alivisatos, Nano Lett. 7(10), 29512959 (2007).
43. T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmüller and H. Weller, J. Phys. Chem. 98(31), 76657673 (1994).
44. S. Shanbhag and N. A. Kotov, J. Phys. Chem. B 110(25), 1221112217 (2006).
45. J. Müller, J. M. Lupton, P. Lagoudakis, R. Koeppe, A. L. Rogach, J. Feldmann, D. Talapin, and H. Weller, Nano Lett. 5, 20442049 (2005).
46. C. Mauser, E. Da Como, J. Baldauf, A. L. Rogach, J. Huang, D. V. Talapin, and J. Feldmann, Phys. Rev. B 82, 081306R (2010).

Data & Media loading...


Article metrics loading...



Straightforward, easily upscalable synthesis of monodisperse CdS and CdSe/CdS nanocrystals at room temperature in water/ethylendiamine mixtures is demonstrated, resulting in the formation of high-quality tetrapod-shaped nanoparticles in aqueous environment. It offers advantages for the subsequent direct use of aqueous-based colloidal nanocrystals for photocatalytic hydrogen generation from water, as it avoids any additional phase transfer necessary for any commonly employed nanoparticles synthesized in organic medium. Being decorated with platinum as a co-catalyst, CdSe/CdS tetrapods achieve hydrogen evolution rates of up to 25 mmol/g per hour, which favorably compares to previously reported studies on CdS nanorods.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd