1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Aqueous synthesis of CdS and CdSe/CdS tetrapods for photocatalytic hydrogen generation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4855795
1.
1. C. d. M. Donega, Chem. Soc. Rev. 40(3), 15121546 (2011).
http://dx.doi.org/10.1039/c0cs00055h
2.
2. A. P. Alivisatos, Science 271(5251), 933937 (1996).
http://dx.doi.org/10.1126/science.271.5251.933
3.
3. A. Rogach, Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications (Springer, 2008).
4.
4. S. Gupta, O. Zhovtiuk, A. Vaneski, Y.-C. Lin, W.-C. Chou, S. V. Kershaw, and A. L. Rogach, Part. Part. Syst. Charact. 30(4), 346354 (2013).
http://dx.doi.org/10.1002/ppsc.201200139
5.
5. J. B. Delehanty, H. Mattoussi, and I. L. Medintz, Anal. Bioanal. Chem. 393(4), 10911105 (2009).
http://dx.doi.org/10.1007/s00216-008-2410-4
6.
6. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science 307(5709), 538544 (2005).
http://dx.doi.org/10.1126/science.1104274
7.
7. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, Nat. Biotechnol. 22(8), 969976 (2004).
http://dx.doi.org/10.1038/nbt994
8.
8. S. Nizamoglu, E. Mutlugun, O. Akyuz, N. K. Perkgoz, H. V. Demir, L. Liebscher, S. Sapra, N. Gaponik, and A. Eychmüller, New J. Phys. 10(2), 023026 (2008).
http://dx.doi.org/10.1088/1367-2630/10/2/023026
9.
9. H. V. Demir, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, and A. Eychmüller, Nanotoday 6(6), 632647 (2011).
http://dx.doi.org/10.1016/j.nantod.2011.10.006
10.
10. T. Erdem and V. Demir Hilmi, Nanophotonics 2, 57 (2013).
http://dx.doi.org/10.1515/nanoph-2012-0031
11.
11. S. Rühle, M. Shalom, and A. Zaban, ChemPhysChem 11(11), 22902304 (2010).
http://dx.doi.org/10.1002/cphc.201000069
12.
12. A. Nozik, Physica E 14(1), 115120 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
13.
13. P. V. Kamat, J. Phys. Chem. C 112(48), 1873718753 (2008).
http://dx.doi.org/10.1021/jp806791s
14.
14. F. A. Frame, E. C. Carroll, D. S. Larsen, M. Sarahan, N. D. Browning, and F. E. Osterloh, Chem. Commun. (Cambridge) (19), 22062208 (2008).
http://dx.doi.org/10.1039/b718796c
15.
15. L. Amirav and A. P. Alivisatos, J. Phys. Chem. Lett. 1(7), 10511054 (2010).
http://dx.doi.org/10.1021/jz100075c
16.
16. Y. Shemesh, J. E. Macdonald, G. Menagen and U. Banin, Angew. Chem., Int. Ed. 50(5), 11851189 (2011).
http://dx.doi.org/10.1002/anie.201006407
17.
17. Y. Li, Y. Hu, S. Peng, G. Lu, and S. Li, J. Phys. Chem. C 113(21), 93529358 (2009).
http://dx.doi.org/10.1021/jp901505j
18.
18. M. L. Tang, D. C. Grauer, B. Lassalle-Kaiser, V. K. Yachandra, L. Amirav, J. R. Long, J. Yano, and A. P. Alivisatos, Angew. Chem. 123(43), 1038510389 (2011).
http://dx.doi.org/10.1002/ange.201104412
19.
19. M. Berr, A. Vaneski, A. S. Susha, J. Rodriguez-Fernandez, M. Doblinger, F. Jackel, A. L. Rogach, and J. Feldmann, Appl. Phys. Lett. 97(9), 093108 (2010).
http://dx.doi.org/10.1063/1.3480613
20.
20. J. Huang, K. L. Mulfort, P. Du, and L. X. Chen, J. Am. Chem. Soc. 134(40), 1647216475 (2012).
http://dx.doi.org/10.1021/ja3062584
21.
21. K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, Nano Lett. 11(7), 29192926 (2011).
http://dx.doi.org/10.1021/nl201388c
22.
22. T. O’Connor, M. S. Panov, A. Mereshchenko, A. N. Tarnovsky, R. Lorek, D. Perera, G. Diederich, S. Lambright, P. Moroz, and M. Zamkov, ACS Nano 6(9), 81568165 (2012).
http://dx.doi.org/10.1021/nn302810y
23.
23. M. J. Berr, F. F. Schweinberger, M. Döblinger, K. E. Sanwald, C. Wolff, J. Breimeier, A. S. Crampton, C. J. Ridge, M. Tschurl, U. Heiz, F. Jäckel, and J. Feldmann, Nano Lett. 12(11), 59035906 (2012).
http://dx.doi.org/10.1021/nl3033069
24.
24. J. U. Bang, S. J. Lee, J. S. Jang, W. Choi, and H. Song, J. Phys. Chem. Lett. 3(24), 37813785 (2012).
http://dx.doi.org/10.1021/jz301732n
25.
25. Z. Khan, T. R. Chetia, A. K. Vardhaman, D. Barpuzary, C. V. Sastri, and M. Qureshi, RSC Adv. 2(32), 1212212128 (2012).
http://dx.doi.org/10.1039/c2ra21596a
26.
26. Z. Han, F. Qiu, R. Eisenberg, P. L. Holland, and T. D. Krauss, Science 338(6112), 13211324 (2012).
http://dx.doi.org/10.1126/science.1227775
27.
27. K. A. Brown, M. B. Wilker, M. Boehm, G. Dukovic, and P. W. King, J. Am. Chem. Soc. 134(12), 56275636 (2012).
http://dx.doi.org/10.1021/ja2116348
28.
28. M. Sakamoto, A. Xiong, R. Kanakubo, T. Ikeda, T. Yoshinaga, K. Maeda, K. Domen, and T. Teranishi, Chem. Lett. 41(10), 13251327 (2012).
http://dx.doi.org/10.1246/cl.2012.1325
29.
29. M. J. Berr, P. Wagner, S. Fischbach, A. Vaneski, J. Schneider, A. S. Susha, A. L. Rogach, F. Jackel, and J. Feldmann, Appl. Phys. Lett. 100(22), 223903223903 (2012).
http://dx.doi.org/10.1063/1.4723575
30.
30. M. J. Berr, A. Vaneski, C. Mauser, S. Fischbach, A. S. Susha, A. L. Rogach, F. Jäckel, and J. Feldmann, Small 8(2), 291297 (2012).
http://dx.doi.org/10.1002/smll.201101317
31.
31. H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, Chem. Soc. Rev. 41(17), 56545671 (2012).
http://dx.doi.org/10.1039/c2cs35019j
32.
32. X. Chen, C. Li, M. Gratzel, R. Kostecki, and S. S. Mao, Chem. Soc. Rev. 41(23), 79097937 (2012).
http://dx.doi.org/10.1039/c2cs35230c
33.
33. M. Graetzel, Acc. Chem. Res. 14(12), 376384 (1981).
http://dx.doi.org/10.1021/ar00072a003
34.
34. A. Henglein, J. Phys. Chem. 86 (13), 22912293 (1982).
http://dx.doi.org/10.1021/j100210a010
35.
35. Z. Khan, M. Khannam, N. Vinothkumar, M. De, and M. Qureshi, J. Mater. Chem. 22(24), 1209012095 (2012).
http://dx.doi.org/10.1039/c2jm31148h
36.
36. M. Matsumura, S. Furukawa, Y. Saho, and H. Tsubomura, J. Phys. Chem. 89(8), 13271329 (1985).
http://dx.doi.org/10.1021/j100254a001
37.
37. J. F. Reber and M. Rusek, J. Phys. Chem. 90(5), 824834 (1986).
http://dx.doi.org/10.1021/j100277a024
38.
38. W. Wang and F. Bai, ChemPhysChem 4(7), 761763 (2003).
http://dx.doi.org/10.1002/cphc.200300727
39.
39. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller, and H. Weller, J. Phys. Chem. B 103(16), 30653069 (1999).
http://dx.doi.org/10.1021/jp984833b
40.
40. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Nature Mater. 2(6), 382385 (2003).
http://dx.doi.org/10.1038/nmat902
41.
41. D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, and A. Paul Alivisatos, Nature (London) 430(6996), 190195 (2004).
http://dx.doi.org/10.1038/nature02695
42.
42. D. V. Talapin, J. H. Nelson, E. V. Shevchenko, S. Aloni, B. Sadtler, and A. P. Alivisatos, Nano Lett. 7(10), 29512959 (2007).
http://dx.doi.org/10.1021/nl072003g
43.
43. T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmüller and H. Weller, J. Phys. Chem. 98(31), 76657673 (1994).
http://dx.doi.org/10.1021/j100082a044
44.
44. S. Shanbhag and N. A. Kotov, J. Phys. Chem. B 110(25), 1221112217 (2006).
http://dx.doi.org/10.1021/jp0611119
45.
45. J. Müller, J. M. Lupton, P. Lagoudakis, R. Koeppe, A. L. Rogach, J. Feldmann, D. Talapin, and H. Weller, Nano Lett. 5, 20442049 (2005).
http://dx.doi.org/10.1021/nl051596x
46.
46. C. Mauser, E. Da Como, J. Baldauf, A. L. Rogach, J. Huang, D. V. Talapin, and J. Feldmann, Phys. Rev. B 82, 081306R (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081306
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4855795
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4855795
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4855795
2014-01-08
2014-12-29

Abstract

Straightforward, easily upscalable synthesis of monodisperse CdS and CdSe/CdS nanocrystals at room temperature in water/ethylendiamine mixtures is demonstrated, resulting in the formation of high-quality tetrapod-shaped nanoparticles in aqueous environment. It offers advantages for the subsequent direct use of aqueous-based colloidal nanocrystals for photocatalytic hydrogen generation from water, as it avoids any additional phase transfer necessary for any commonly employed nanoparticles synthesized in organic medium. Being decorated with platinum as a co-catalyst, CdSe/CdS tetrapods achieve hydrogen evolution rates of up to 25 mmol/g per hour, which favorably compares to previously reported studies on CdS nanorods.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4855795.html;jsessionid=1qjx87mdqed12.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4855795&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Aqueous synthesis of CdS and CdSe/CdS tetrapods for photocatalytic hydrogen generation
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4855795
10.1063/1.4855795
SEARCH_EXPAND_ITEM