1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Research Update: Progress in synthesis of nanoparticle dimers by self-assembly
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4858295
1.
1. K. Bosnick, M. Maillard, and L. Brus, J. Phys. Chem. B 107, 99649972 (2003).
http://dx.doi.org/10.1021/jp034632u
2.
2. X.-M. Qian and S. M. Nie, Chem. Soc. Rev. 37, 912920 (2008).
http://dx.doi.org/10.1039/b708839f
3.
3. L. Chen, Z. Li, Y. Meng, M. Lu, Z. Wang, and R.-Q. Zhang, J. Phys. Chem. C 117, 1254412551 (2013).
http://dx.doi.org/10.1021/jp401462t
4.
4. S. T. Sivapalan, B. M. DeVetter, T. K. Yang, M. V. Schulmerich, R. Bhargava, and C. J. Murphy, J. Phys. Chem. C 117, 1067710682 (2013).
http://dx.doi.org/10.1021/jp402392y
5.
5. L. Kong, R. Dong, H. Ma, and J. Hao, Langmuir 29, 42354241 (2013).
http://dx.doi.org/10.1021/la305143v
6.
6. D. Conklin, S. Nanayakkara, T.-H. Park, M. F. Lagadec, J. T. Stecher, X. Chen, M. J. Therien, and D. A. Bonnell, ACS Nano 7, 44794486 (2013).
http://dx.doi.org/10.1021/nn401071d
7.
7. S. V. Aradhya and L. Venkataraman, Nat. Nanotechnol. 8, 399410 (2013).
http://dx.doi.org/10.1038/nnano.2013.91
8.
8. S. Seo, M. Min, S. M. Lee, and H. Lee, Nat. Commun. 4, 19201927 (2013).
http://dx.doi.org/10.1038/ncomms2937
9.
9. S. J. van der Molen, J. Liao, T. Kudernac, J. S. Agustsson, L. Bernard, M. Calame, B. J. van Wees, B. L. Feringa, and C. Schönenberg, Nano Lett. 9, 7680 (2009).
http://dx.doi.org/10.1021/nl802487j
10.
10. T. A. Gschneidtner, Y. A. Diaz Fernandez, and K. Moth-Poulsen, J. Mater. Chem. C 1, 71277133 (2013).
http://dx.doi.org/10.1039/c3tc31483a
11.
11. Y. Tang, Z. Jiang, Q. Tay, J. Deng, Y. Lai, D. Gong, Z. Dong, and Z. Chen, RSC Adv. 2, 94069414 (2012).
http://dx.doi.org/10.1039/c2ra21300a
12.
12. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, J. Am. Chem. Soc. 130, 16761680 (2008).
http://dx.doi.org/10.1021/ja076503n
13.
13. J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai, J. Phys. Chem. C 115, 210216 (2011).
http://dx.doi.org/10.1021/jp1074048
14.
14. X. Huang, Y. Li, Y. Chen, H. Zhou, X. Duan, and Y. Huang, Angew. Chem., Int. Ed. Engl. 52, 60636067 (2013).
http://dx.doi.org/10.1002/anie.201301096
15.
15. A. Tanaka, Y. Nishino, S. Sakaguchi, T. Yoshikawa, K. Imamura, K. Hashimoto, and H. Kominami, Chem. Commun. 49, 25512553 (2013).
http://dx.doi.org/10.1039/c3cc39096a
16.
16. Z. Zhang, M. Sun, P. Ruan, H. Zheng, and H. Xu, Nanoscale 5, 41514155 (2013).
http://dx.doi.org/10.1039/c3nr00966a
17.
17. Z. Zhang, L. Chen, M. Sun, P. Ruan, H. Zheng, and H. Xu, Nanoscale 5, 32493252 (2013).
http://dx.doi.org/10.1039/c3nr00352c
18.
18. Y. Tang, Z. Jiang, G. Xing, A. Li, P. D. Kanhere, T. C. Sum, S. Li, X. Chen, Z. Dong, and Z. Chen, Adv. Funct. Mater. 23, 29322940 (2013).
http://dx.doi.org/10.1002/adfm.201203379
19.
19. K. Tedsree, T. Li, S. Jones, C. W. A. Chan, K. M. K. Yu, P. A. J. Bagot, E. A. Marquis, G. D. W. Smith, and S. C. E. Tsang, Nat. Nanotechnol. 6, 302307 (2011).
http://dx.doi.org/10.1038/nnano.2011.42
20.
20. C.-T. Dinh, T.-D. Nguyen, F. Kleitz, and T.-O. Do, ACS Appl. Mater. Interfaces 3, 22282234 (2011).
http://dx.doi.org/10.1021/am200480b
21.
21. J. Song, J. Roh, I. Lee, and J. Jang, Dalton Trans. 42, 1389713904 (2013).
http://dx.doi.org/10.1039/c3dt51343b
22.
22. Y. Feng, J. He, H. Wang, Y. Y. Tay, H. Sun, L. Zhu, and H. Chen, J. Am. Chem. Soc. 134, 20042007 (2012).
http://dx.doi.org/10.1021/ja211086y
23.
23. M. R. Buck, J. F. Bondi, and R. E. Schaak, Nat. Chem. 4, 3744 (2012).
http://dx.doi.org/10.1038/nchem.1195
24.
24. C.-T. Wu, K. M. K. Yu, F. Liao, N. Young, P. Nellist, A. Dent, A. Kroner, and S. C. E. Tsang, Nat. Commun. 3, 8 (2012).
http://dx.doi.org/10.1038/ncomms2053
25.
25. K. D. Osberg, M. Rycenga, N. Harris, A. L. Schmucker, M. R. Langille, G. C. Schatz, and C. A. Mirkin, Nano Lett. 12, 38283832 (2012).
http://dx.doi.org/10.1021/nl301793k
26.
26. S. Pradhan, D. Ghosh, and S. Chen, ACS Appl. Mater. Interfaces 1, 20602065 (2009).
http://dx.doi.org/10.1021/am900425v
27.
27. J. Lin, J. Shen, R. Wang, J. Cui, W. Zhou, P. Hu, D. Liu, H. Liu, J. Wang, R. I. Boughton et al., J. Mater. Chem. 21, 51065013 (2011).
http://dx.doi.org/10.1039/c0jm04131a
28.
28. G. C. Silva, R. Juarez, T. Marino, R. Molinari, and H. Garcia, J. Am. Chem. Soc. 133, 595602 (2011).
http://dx.doi.org/10.1021/ja1086358
29.
29. P. Christopher, H. Xin, and S. Linic, Nat. Chem. 3, 467472 (2011).
http://dx.doi.org/10.1038/nchem.1032
30.
30. D. Seo, G. Park, and H. Song, J. Am. Chem. Soc. 134, 12211227 (2012).
http://dx.doi.org/10.1021/ja2093663
31.
31. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, Nat. Mater. 10, 631636 (2011).
http://dx.doi.org/10.1038/nmat3029
32.
32. T. Shegai, P. Johansson, C. Langhammer, and M. Käll, Nano Lett. 12, 24642469 (2012).
http://dx.doi.org/10.1021/nl300558h
33.
33. E. M. Larsson, C. Langhammer, I. Zorić, and B. Kasemo, Science 326, 10911094 (2009).
http://dx.doi.org/10.1126/science.1176593
34.
34. S. Linic, P. Christopher, and D. B. Ingram, Nat. Mater. 10, 911921 (2011).
http://dx.doi.org/10.1038/nmat3151
35.
35. C. Toumey, Nat. Nanotechnol. 3, 180181 (2008).
http://dx.doi.org/10.1038/nnano.2008.74
36.
36. D. P. Thurs, Sci. Commun. 29, 6595 (2007).
http://dx.doi.org/10.1177/1075547007306340
37.
37. D. Baird and J. Schummer, HYLE: Int. J. Philos. Chem. 10, 6364 (2004).
38.
38. J. Wang, Nanomachines—Fundamentals and Applications (Wiley, 2013).
39.
39. C. Milburn, Nanovision—Engineering the Future (Duke University Press, 2008).
40.
40. J. Perlich, Millennial Mythmaking: Essays on the Power of Science Fiction and Fantasy Literature, Films and Games (MCcFarland & Company, North Carolina, 2010).
41.
41. A. Corbett, J. Evol. Technol. 20, 4350 (2009).
42.
42. F. Schluenzen, A. Tocilj, R. Zarivach, J. Harms, M. Gluehmann, D. Janell, A. Bashan, H. Bartels, I. Agmon, A. Yonath et al., Cell 102, 615623 (2000).
http://dx.doi.org/10.1016/S0092-8674(00)00084-2
43.
43. A. Yonath, Annu. Rev. Biochem. 74, 649679 (2005).
http://dx.doi.org/10.1146/annurev.biochem.74.082803.133130
44.
44. A. Yonath, Annu. Rev. Biophys. Biomol. Struct. 31, 257273 (2002).
http://dx.doi.org/10.1146/annurev.biophys.31.082901.134439
45.
45. T. Shinoda, H. Ogawa, F. Cornelius, and C. Toyoshima, Nature (London) 459, 446450 (2009).
http://dx.doi.org/10.1038/nature07939
46.
46. J. P. Morth, B. P. Pedersen, M. S. Toustrup-Jensen, T. L.-M. Sørensen, J. Petersen, J. P. Andersen, B. Vilsen, and P. Nissen, Nature (London) 450, 10431049 (2007).
http://dx.doi.org/10.1038/nature06419
47.
47. A. Taglietti, Y. A. Diaz Fernandez, E. Amato, L. Cucca, G. Dacarro, P. Grisoli, V. Necchi, P. Pallavicini, L. Pasotti, and M. Patrini, Langmuir 28, 81408148 (2012).
http://dx.doi.org/10.1021/la3003838
48.
48. K. Lee, A. N. Sathyagal, and A. V. McCormick, Colloids Surf. 144, 115125 (1998).
http://dx.doi.org/10.1016/S0927-7757(98)00566-4
49.
49. V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, J. Phys. Chem. C 116, 26832690 (2012).
http://dx.doi.org/10.1021/jp209251y
50.
50. H. M. Zakaria, A. Shah, M. Konieczny, J. A. Hoffmann, A. J. Nijdam, and M. E. Reeves, Langmuir 29, 76617673 (2013).
http://dx.doi.org/10.1021/la400582v
51.
51. T. Kim, K. Lee, M.-S. Gong, and S.-W. Joo, Langmuir 21, 95249258 (2005).
http://dx.doi.org/10.1021/la0504560
52.
52. Y. K. Leong, P. J. Scales, T. W. Healy, and D. V. Boger, Colloids Surf. A 95, 4352 (1995).
http://dx.doi.org/10.1016/0927-7757(94)03010-W
53.
53. T. Kim, C.-H. Lee, S.-W. Joo, and K. Lee, J. Colloid Interface Sci. 318, 238243 (2008).
http://dx.doi.org/10.1016/j.jcis.2007.10.029
54.
54. B. Y. R. Hogg, T. W. Healy, and D. W. Fuerstenau, Trans. Faraday Soc. 62, 16381651 (1966).
http://dx.doi.org/10.1039/tf9666201638
55.
55. M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, ACS Nano 4, 35913605 (2010).
http://dx.doi.org/10.1021/nn100869j
56.
56. M. Lattuada and T. A. Hatton, Nano Today 6, 286308 (2011).
http://dx.doi.org/10.1016/j.nantod.2011.04.008
57.
57. K. Lee and J. Irudayaraj, Small 9(7), 11061115 (2013).
http://dx.doi.org/10.1002/smll.201201985
58.
58. K.-M. Sung, D. W. Mosley, B. R. Peelle, S. Zhang, and J. M. Jacobson, J. Am. Chem. Soc. 126, 50645065 (2004).
http://dx.doi.org/10.1021/ja049578p
59.
59. P. M. Peiris, E. Schmidt, M. Calabrese, and E. Karathanasis, PLoS One 6, e15927 (2011).
http://dx.doi.org/10.1371/journal.pone.0015927
60.
60. J. G. Worden, A. W. Shaffer, and Q. Huo, Chem. Commun. 2004, 518519.
http://dx.doi.org/10.1039/B312819A
61.
61. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, Nat. Biotechnol. 23, 741745 (2005).
http://dx.doi.org/10.1038/nbt1100
62.
62. B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, Nano Lett. 5, 22462252 (2005).
http://dx.doi.org/10.1021/nl051592s
63.
63. P. K. Jain, W. Huang, and M. A. El-Sayed, Nano Lett. 7, 20802088 (2007).
http://dx.doi.org/10.1021/nl071008a
64.
64. T. Sannomiya, C. Hafner, and J. Voros, Nano Lett. 8, 34503455 (2008).
http://dx.doi.org/10.1021/nl802317d
65.
65. Y. Li, C. Jing, L. Zhang, and Y.-T. Long, Chem. Soc. Rev. 41, 632642 (2012).
http://dx.doi.org/10.1039/c1cs15143f
66.
66. B. M. Reinhard, S. Sheikholeslami, A. Mastroianni, A. P. Alivisatos, and J. Liphardt, Proc. Natl. Acad. Sci. U.S.A. 104, 26672672 (2007).
http://dx.doi.org/10.1073/pnas.0607826104
67.
67. S. E. Lee, A. P. Alivisatos, and M. J. Bissell, Systems Biomedicine 1, 1219 (2013).
http://dx.doi.org/10.4161/sysb.22834
68.
68. L. Tong, V. D. Miljković, and M. Käll, Nano Lett. 10, 268273 (2010).
http://dx.doi.org/10.1021/nl9034434
69.
69. S. Bidault, F. J. G. de Abajo, and A. Polman, J. Am. Chem. Soc. 130, 27502751 (2008).
http://dx.doi.org/10.1021/ja711074n
70.
70. B. Sepúlveda, J. Alegret, and M. Käll, Opt. Express 15, 1491414920 (2007).
http://dx.doi.org/10.1364/OE.15.014914
71.
71. H. Wang and B. M. Reinhard, J. Phys. Chem. C 113, 1121511222 (2009).
http://dx.doi.org/10.1021/jp900874n
72.
72. M. Ringler, T. A. Klar, A. Schwemer, A. S. Susha, J. Stehr, G. Raschke, S. Funk, M. Borowski, A. Nichtl, K. Kürzinger et al., Nano Lett. 7, 27532757 (2007).
http://dx.doi.org/10.1021/nl0712466
73.
73. C. P. Shaw, D. G. Fernig, and R. Lévy, J. Mater. Chem. 21, 1218112187 (2011).
http://dx.doi.org/10.1039/c1jm11945a
74.
74. J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, Nanoscale 3, 13041315 (2011).
http://dx.doi.org/10.1039/c0nr00804d
75.
75. R. J. Macfarlane, M. N. O’Brien, S. H. Petrosko, and C. A. Mirkin, Angew. Chem., Int. Ed. Engl. 52, 56885698 (2013).
http://dx.doi.org/10.1002/anie.201209336
76.
76. M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein, P. Meakin, Nature (London) 339, 360362 (1989).
http://dx.doi.org/10.1038/339360a0
77.
77. E. Hao and G. C. Schatz, J. Chem. Phys. 120, 357 (2004).
http://dx.doi.org/10.1063/1.1629280
78.
78. K. R. Gopidas and M. Bohorquez, J. Phys. Chem. 94, 64356440 (1990).
http://dx.doi.org/10.1021/j100379a051
79.
79. D. Lawless, S. Kapoor, and D. Meisel, J. Phys. Chem. 99, 1032910335 (1995).
http://dx.doi.org/10.1021/j100025a040
80.
80. E. Amato, Y. A. Diaz-Fernandez, A. Taglietti, P. Pallavicini, L. Pasotti, L. Cucca, C. Milanese, P. Grisoli, C. Dacarro, J. M. Fernandez-Hechavarria et al., Langmuir 27, 91659173 (2011).
http://dx.doi.org/10.1021/la201200r
81.
81. X. Wang, G. Li, T. Chen, M. Yang, Z. Zhang, T. Wu, and H. Chen, Nano Lett. 8, 26432647 (2008).
http://dx.doi.org/10.1021/nl080820q
82.
82. W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, Nano Lett. 9, 485490 (2009).
http://dx.doi.org/10.1021/nl803621x
83.
83. G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, and H. Chen, J. Am. Chem. Soc. 132, 36443645 (2010).
http://dx.doi.org/10.1021/ja9090885
84.
84. Y. Wang, G. Chen, M. Yang, G. Silber, S. Xing, L. H. Tan, F. Wang, Y. Feng, X. Liu, S. Li et al., Nat. Commun. 1 (2010).
http://dx.doi.org/10.1038/ncomms1089
85.
85. L. C. Brousseau III, J. P. Novak, S. M. Marinakos, and D. L. Feldheim, Adv. Mater. 11, 447449 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199904)11:6<447::AID-ADMA447>3.0.CO;2-I
86.
86. P. G. Schultz, X. Peng, T. E. Wilson, and A. P. Alivisatos, Angew. Chem., Int. Ed. 36, 19961998 (1997).
http://dx.doi.org/10.1002/anie.199719961
87.
87. G. A. Devries, M. Brunnbauer, Y. Hu, A. M. Jackson, B. Long, B. T. Neltner, O. Uzun, B. H. Wunsch, and F. Stellacci, Science 315, 358361 (2007).
http://dx.doi.org/10.1126/science.1133162
88.
88. T. Chen, M. Yang, X. Wang, L. H. Tan, and H. Chen, J. Am. Chem. Soc. 130, 1185811859 (2008).
http://dx.doi.org/10.1021/ja8040288
89.
89. K. Nakata, Y. Hu, O. Uzun, O. Bakr, and F. Stellacci, Adv. Mater. 20, 42944299 (2008).
http://dx.doi.org/10.1002/adma.200800022
90.
90. H. Li, Z. Li, L. Wu, Y. Zhang, M. Yu, and L. Wei, Langmuir 29, 39433949 (2013).
http://dx.doi.org/10.1021/la400397q
91.
91. T. Dadosh, Y. Gordin, R. Krahne, I. Khivrich, D. Mahalu, V. Frydman, J. Sperling, A. Yacoby, and I. Bar-Joseph, Nature (London) 436, 677680 (2005).
http://dx.doi.org/10.1038/nature03898
92.
92. T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, Proc. Natl. Acad. Sci. U.S.A. 105, 1644816453 (2008).
http://dx.doi.org/10.1073/pnas.0808365105
93.
93. A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez Jr., and P. G. Schultz, Nature (London) 382, 609611 (1996).
http://dx.doi.org/10.1038/382609a0
94.
94. C. A. Mikrin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature (London) 382, 607609 (1996).
http://dx.doi.org/10.1038/382607a0
95.
95. A. Gräslund, R. Rigler, and J. Widengren, Single Molecule Spectroscopy in Chemistry, Physics and Biology, Springer Series in Chemical Physics Vol. 96 (Springer, 2010).
96.
96. C. L. Choi and A. P. Alivisatos, Annu. Rev. Phys. Chem. 61, 369389 (2010).
http://dx.doi.org/10.1146/annurev.physchem.012809.103311
97.
97. C. M. Micheel, D. Zanchet, and A. P. Alivisatos, Langmuir 24, 1008410088 (2008).
http://dx.doi.org/10.1021/la801101k
98.
98. R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, Science 334, 204208 (2011).
http://dx.doi.org/10.1126/science.1210493
99.
99. J. G. Díaz, J. Planelles, W. Jaskólski, J. Aizpurua, and G. W. Bryant, J. Chem. Phys. 119, 7484 (2003).
http://dx.doi.org/10.1063/1.1605940
100.
100. Y. A. Diaz-Fernandez, P. Pallavicini, L. Pasotti, C. Milanese, E. Pellicer, M. D. Baró, Y. Ren, and L. Malavasi, Nanoscale 3, 42204225 (2011).
http://dx.doi.org/10.1039/c1nr10832h
101.
101. H. D. Hill, R. J. Macfarlane, A. J. Senesi, B. Lee, S. Y. Park, and C. A. Mirkin, Nano Lett. 58, 23412344 (2008).
http://dx.doi.org/10.1021/nl8011787
102.
102. R. McWeeny, Proc. R. Soc. London, Ser. A 223, 6379 (1954).
http://dx.doi.org/10.1098/rspa.1954.0100
103.
103. J. Du and R. K. O’Reilly, Chem. Soc. Rev. 40, 24022416 (2011).
http://dx.doi.org/10.1039/c0cs00216j
104.
104. B. Wang, B. Li, B. Zhao, and C. Y. Li, J. Am. Chem. Soc. 130, 1159411595 (2008).
http://dx.doi.org/10.1021/ja804192e
105.
105. A. H. Gröschel, A. Walther, T. I. Löbling, F. H. Schacher, H. Schmalz, and A. H. E. Müller, Nature (London) 503, 247252 (2013).
http://dx.doi.org/10.1038/nature12610
106.
106. T. M. Hermans, M. A. C. Broeren, N. Gomopoulos, P. van der Schoot, M. H. P. van Genderen, N. A. J. M. Sommerdijk, G. Fytas, and E. W. Meijer, Nat. Nanotechnol. 4, 721726 (2009).
http://dx.doi.org/10.1038/nnano.2009.232
107.
107. C. Salvador-Morales, P. M. Valencia, W. Gao, R. Karnik, and O. C. Farokhzad, Small 9, 511517 (2013).
http://dx.doi.org/10.1002/smll.201201499
108.
108. Z. Preisler, T. Vissers, F. Smallenburg, G. Munaò, and F. Sciortino, J. Phys. Chem. B 117, 95409547 (2013).
http://dx.doi.org/10.1021/jp404053t
109.
109. O. A. Vasilyev, B. A. Klumov, and A. V. Tkachenko, Phys. Rev. E 88, 012302 (2013).
http://dx.doi.org/10.1103/PhysRevE.88.012302
110.
110. J. Zhang, Z.-Y. Lu, and Z.-Y. Sun, Soft Matter 8, 70737080 (2012).
http://dx.doi.org/10.1039/c2sm25078k
111.
111. S. C. Glotzer and Z. Zhang, Nano Lett. 4, 14071413 (2004).
http://dx.doi.org/10.1021/nl0493500
112.
112. R. Guo, Z. Liu, X.-M. Xie, and L.-T. Yan, J. Phys. Chem. Lett. 4, 12211226 (2013).
http://dx.doi.org/10.1021/jz4003789
113.
113. A. Lombardi, M. P. Grzelczak, A. Crut, P. Maioli, I. Pastoriza-Santos, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, ACS Nano 7, 25222531 (2013).
http://dx.doi.org/10.1021/nn305865h
114.
114. G. Chen, Y. Wang, L. H. Tan, M. Yang, L. S. Tan, Y. Chen, and H. Chen, J. Am. Chem. Soc. 131, 42184219 (2009).
http://dx.doi.org/10.1021/ja900809z
115.
115. X. Xu, S. Stöttinger, G. Battagliarin, G. Hinze, E. Mugnaioli, C. Li, K. Müllen, and T. Basché, J. Am. Chem. Soc. 133, 1806218065 (2011).
http://dx.doi.org/10.1021/ja2077284
116.
116. X.-L. Liu, S. Liang, F. Nan, Z.-J. Yang, X.-F. Yu, L. Zhou, Z.-H. Hao, and Q.-Q. Wang, Nanoscale 5, 53685374 (2013).
http://dx.doi.org/10.1039/c3nr01170d
117.
117. C. Kuemin, L. Nowack, L. Bozano, N. D. Spencer, and H. Wolf, Adv. Funct. Mater. 22, 702708 (2012).
http://dx.doi.org/10.1002/adfm.201101760
118.
118. D. Nepal, K. Park, and R. A. Vaia, Small 8, 10131020 (2012).
http://dx.doi.org/10.1002/smll.201102152
119.
119. E. M. Larsson, S. Syrenova, and C. Langhammer, Nanophotonics 1, 249266 (2012).
http://dx.doi.org/10.1515/nanoph-2012-0029
120.
120. H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, Phys. Chem. Chem. Phys. 8, 814821 (2006).
http://dx.doi.org/10.1039/b514644e
121.
121. G. Sirinakis, R. Siddique, I. Manning, P. H. Rogers, and M. A. Carpenter, J. Phys. Chem. B 110, 1350813511 (2006).
http://dx.doi.org/10.1021/jp062760n
122.
122. P. H. Rogers, G. Sirinakis, and M. A. Carpenter, J. Phys. Chem. C 112, 87848790 (2008).
http://dx.doi.org/10.1021/jp800524z
123.
123. G. K. Goswami and K. K. Nanda, J. Phys. Chem. C 114, 1432714331 (2010).
http://dx.doi.org/10.1021/jp100820c
124.
124. N. A. Joy, B. K. Janiszewski, S. Novak, T. W. Johnson, S.-H. Oh, A. Raghunathan, J. Hartley, and M. A. Carpenter, J. Phys. Chem. C 117, 1171811724 (2013).
http://dx.doi.org/10.1021/jp400607s
125.
125. M. Grzelczak, A. Sánchez-Iglesias, H. H. Mezerji, S. Bals, J. Pérez-Juste, and L. M. Liz-Marzán, Nano Lett. 12, 43804384 (2012).
http://dx.doi.org/10.1021/nl3021957
126.
126. T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, ACS Nano 3, 19881994 (2009).
http://dx.doi.org/10.1021/nn900422w
127.
127. S. Bidault and A. Polman, Int. J. Opt. 2012, 15.
http://dx.doi.org/10.1155/2012/387274
128.
128. T. Jain, F. Westerlund, E. Johnson, K. Moth-Poulsen, and T. Bjørnholm, ACS Nano 3, 828834 (2009).
http://dx.doi.org/10.1021/nn900066w
129.
129. A. Rey, G. Billardon, E. Lörtscher, K. Moth-Poulsen, N. Stuhr-Hansen, H. Wolf, T. Bjørnholm, A. Stemmer, and H. Riel, Nanoscale 5, 86808688 (2013).
http://dx.doi.org/10.1039/c3nr02358c
130.
130. Y. Hu and Y. Sun, J. Am. Chem. Soc. 135, 22132221 (2013).
http://dx.doi.org/10.1021/ja309501s
131.
131. B. Dong, B. Li, and C. Y. Li, J. Mater. Chem. 21, 1315513158 (2011).
http://dx.doi.org/10.1039/c1jm12866c
132.
132. A. Guttman, D. Mahalu, J. Sperling, E. Cohen-Hoshen, and I. Bar-Joseph, Appl. Phys. Lett. 99, 063113 (2011).
http://dx.doi.org/10.1063/1.3624899
133.
133. G. B. Braun, S. J. Lee, T. Laurence, N. Fera, L. Fabris, G. C. Bazan, M. Moskovits, and N. O. Reich, J. Phys. Chem. C 113, 1362213629 (2009).
http://dx.doi.org/10.1021/jp903399p
134.
134. T. Peterle, P. Ringler, and M. Mayor, Adv. Funct. Mater. 19, 34973506 (2009).
http://dx.doi.org/10.1002/adfm.200901410
135.
135. J. P. Hermes, F. Sander, U. Fluch, T. Peterle, D. Thompson, R. Urbani, T. Pfohl, and M. Mayor, J. Am. Chem. Soc. 134, 1467414677 (2012).
http://dx.doi.org/10.1021/ja306253t
136.
136. A. Hofmann, P. Schmiel, B. Stein, and C. Graf, Langmuir 27, 1516515175 (2011).
http://dx.doi.org/10.1021/la2028498
137.
137. Y. Wei, K. J. M. Bishop, J. Kim, S. Soh, and B. A. Grzybowski, Angew. Chem., Int. Ed. 48, 94779480 (2009).
http://dx.doi.org/10.1002/anie.200903864
138.
138. C. A. Otter, P. J. Patty, M. A. K. Williams, M. R. Waterland, and S. G. Telfer, Nanoscale 3, 941944 (2011).
http://dx.doi.org/10.1039/c0nr00801j
139.
139. R. J. Puddephatt, Chem. Soc. Rev. 37, 20122027 (2008).
http://dx.doi.org/10.1039/b708622a
140.
140. M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, and S. Bidault, Nano Lett. 11, 50605065 (2011).
http://dx.doi.org/10.1021/nl2032052
141.
141. X. Lan, Z. Chen, B.-J. Liu, B. Ren, J. Henzie, and Q. Wang, Small 9, 23082315 (2013).
http://dx.doi.org/10.1002/smll.201202503
142.
142. M. M. Maye, M. T. Kumara, D. Nykypanchuk, W. B. Sherman, and O. Gang, Nat. Nanotechnol. 5, 116120 (2010).
http://dx.doi.org/10.1038/nnano.2009.378
143.
143. I. A. Trantakis, S. Bolisetty, R. Mezzenga, and S. J. Sturla, Langmuir 29, 1082410830 (2013).
http://dx.doi.org/10.1021/la401211u
144.
144. C. Chi, F. Vargas-Lara, A. V. Tkachenko, F. W. Starr, and O. Gang, ACS Nano 6, 67936802 (2012).
http://dx.doi.org/10.1021/nn301528h
145.
145. L. Lermusiaux, A. Sereda, B. Portier, E. Larquet, and S. Bidault, ACS Nano 6, 1099210998 (2012).
http://dx.doi.org/10.1021/nn304599d
146.
146. Y.-S. Chen, M.-Y. Hong, and G. S. Huang, Nat. Nanotechnol. 7, 197203 (2012).
http://dx.doi.org/10.1038/nnano.2012.7
147.
147. J. I. L. Chen, H. Durkee, B. Traxler, and D. S. Ginger, Small 7, 19931997 (2011).
http://dx.doi.org/10.1002/smll.201100617
148.
148. J. I. L. Chen, Y. Chen, and D. S. Ginger, J. Am. Chem. Soc. 132, 96009601 (2010).
http://dx.doi.org/10.1021/ja103240g
149.
149. W. Ma, M. Sun, L. Xu, L. Wang, H. Kuang, and C. Xu, Chem. Commun. 49, 49894991 (2013).
http://dx.doi.org/10.1039/c3cc39087j
150.
150. P. D. Selid, H. Xu, E. M. Collins, M. S. Face-Collins, and J. X. Zhao, Sensors 9, 54465459 (2009).
http://dx.doi.org/10.3390/s90705446
151.
151. M. Morita, J. Yoshinaga, and J. S. Edmonds, Pure Appl. Chem. 70, 15851615 (1998).
http://dx.doi.org/10.1351/pac199870081585
152.
152. S. R. Jean-Philippe, N. Labbé, J. A. Franklin, and A. Johnson, Proc. Int. Acad. Ecol. Environ. Sci. 2, 139149 (2012).
153.
153. L. Zhang, H. Chang, A. Hirata, H. Wu, Q.-K. Xue, and M. Chen, ACS Nano 7, 45954600 (2013).
http://dx.doi.org/10.1021/nn4013737
154.
154. C. M. Galloway, M. P. Kreuzer, S. S. Acimovic, G. Volpe, M. Correia, S. B. Petersen, M. T. Neves-Petersen, and R. Quidant, Nano Lett. 13, 42994304 (2013).
http://dx.doi.org/10.1021/nl402071p
155.
155. J. Wang, ACS Nano 3, 49 (2009).
http://dx.doi.org/10.1021/nn800829k
156.
156. J. Bath and A. J. Turberfield, Nat. Nanotechnol. 2, 275284 (2007).
http://dx.doi.org/10.1038/nnano.2007.104
157.
157. O. Nicoletti, F. de la Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, Nature (London) 502, 8084 (2013).
http://dx.doi.org/10.1038/nature12469
158.
158. Nat. Nanotechnol. 4, 781 (2009) (Editorial).
http://dx.doi.org/10.1038/nnano.2009.356
159.
159. R. P. Feynman, Eng. Sci. 23, 2236 (1960).
160.
160. R. L. McCreery, H. Yan, and A. J. Bergren, Phys. Chem. Chem. Phys. 15, 10651081 (2013).
http://dx.doi.org/10.1039/c2cp43516k
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4858295
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4858295
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4858295
2014-01-07
2014-10-21

Abstract

This article highlights recent advances in the controlled self-assembly of nanoparticles to produce dimeric nanoparticle structures. The relevance of this emergent field is discussed in terms of recent applications in plasmonics and chemical catalysis. The concept of bond-valence applied to nanoparticles will be discussed, emphasizing some general approaches that have been successfully used to build these structures. Further, the asymmetric functionalization of nanoparticles surfaces as a path to drive selective aggregation, the use of biomolecules to self-assemble nanoparticles into dimers in solution, and the confinement of aggregates in small cavities are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4858295.html;jsessionid=6pjos1c1c3j8k.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4858295&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Research Update: Progress in synthesis of nanoparticle dimers by self-assembly
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4858295
10.1063/1.4858295
SEARCH_EXPAND_ITEM