1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Real-time observation of nanoscale topological transitions in epitaxial PbTe/CdTe heterostructures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4859775
1.
1. V. A. Shchukin and D. Bimberg, Rev. Mod. Phys. 71, 11251171 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.1125
2.
2. Y. Lin, A. Böker, J. He, K. Sill, H. Xiang, C. Abetz, X. Li, J. Wang, T. Emrick, S. Long, Q. Wang, A. Balazs, and T. P. Russell, Nature (London) 434, 5559 (2005).
http://dx.doi.org/10.1038/nature03310
3.
3. S. Karim, M. E. Toimil-Molares, A. G. Balogh, W. Ensinger, T. W. Cornelius, E. U. Khan, and R. Neumann, Nanotechnology 17, 5954 (2006).
http://dx.doi.org/10.1088/0957-4484/17/24/009
4.
4. J. S. Huang, W. I. Goldburg, and A. W. Bjerkaas, Phys. Rev. Lett. 32, 921923 (1974).
http://dx.doi.org/10.1103/PhysRevLett.32.921
5.
5. V. Daniel and H. Lipson, Proc. R. Soc. London, Ser. A 181, 368 (1943).
http://dx.doi.org/10.1098/rspa.1943.0014
6.
6. V. Daniel and H. Lipson, Proc. R. Soc. London, Ser. A 182, 378 (1944).
http://dx.doi.org/10.1098/rspa.1944.0012
7.
7. J. Fan, T. Han, and M. Haataja, J. Chem. Phys. 133, 235101 (2010).
http://dx.doi.org/10.1063/1.3518458
8.
8. S. N. Girard, J. He, C. Li, S. Moses, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nano Lett. 10, 28252831 (2010).
http://dx.doi.org/10.1021/nl100743q
9.
9. G. Reiter, Phys. Rev. Lett. 68, 75 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.75
10.
10. J. Lian, L. Wang, X. Sun, Q. Yu, and R. C. Ewing, Nano Lett. 6, 10471052 (2006).
http://dx.doi.org/10.1021/nl060492z
11.
11. A. B. Tesler, M. M. Maoz, Y. Feldman, A. Vaskevich, and I. Rubinstein, J. Phys. Chem C 117, 11337 (2013).
http://dx.doi.org/10.1021/jp400895z
12.
12. M. E. Toimil-Molares, L. Röntzsch, W. Sigle, K. Heinig, C. Trautmann, and R. Neumann, Adv. Funct. Mater. 22, 695701 (2012).
http://dx.doi.org/10.1002/adfm.201102260
13.
13. W. Heiss, H. Groiss, E. Kaufmann, G. Hesser, M. Böberl, G. Springholz, F. Schäffler, K. Koike, H. Harada, and M. Yano, Appl. Phys. Lett. 88, 192109 (2006).
http://dx.doi.org/10.1063/1.2202107
14.
14. T. Dietl, Nature Mater. 5, 673 (2006).
http://dx.doi.org/10.1038/nmat1721
15.
15. S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and T. Dietl, Nature Mater. 6, 440446 (2007).
http://dx.doi.org/10.1038/nmat1910
16.
16. J. Androulakis, I. Todorov, J. He, D.-Y. Chung, V. Dravid, and M. Kanatzidis, J. Am. Chem. Soc. 133, 1092010927 (2011).
http://dx.doi.org/10.1021/ja203022c
17.
17. A. Hochreiner, T. Schwarzl, M. Eibelhuber, W. Heiss, G. Springholz, V. Kolkovsky, G. Karczewski, and T. Wojtowicz, Appl. Phys. Lett. 98, 021106 (2011).
http://dx.doi.org/10.1063/1.3531760
18.
18. A. Tavakkoli K. G., K. W. Gotrik, A. F. Hannon, A. Alexander-Katz, C. A. Ross, and K. K. Berggren, Science 336, 12941298 (2012).
http://dx.doi.org/10.1126/science.1218437
19.
19. P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.827
20.
20. J. W. Cahn, J. Chem. Phys. 42, 93 (1965).
http://dx.doi.org/10.1063/1.1695731
21.
21. K. Binder and P. Fratzl, in Phase Transformations in Materials, edited by G. Kostorz (Wiley-VCH, Weinheim, Germany, 2001), Chap. 6.
22.
22. Z. Liu, H. Gao, L. Q. Chen, and K. Cho, Phys. Rev. B 68, 035429 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.035429
23.
23. J. Vollmer, G. K. Auernhammer, and D. Vollmer, Phys. Rev. Lett. 98, 115701 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.115701
24.
24. B. E. Sundquist, Acta Metall. 12, 585 (1964).
http://dx.doi.org/10.1016/0001-6160(64)90031-8
25.
25. J. D. Powers and A. M. Glaeser, J. Am. Ceram. Soc. 83, 2297 (2000).
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01550.x
26.
26. Y. Liu, L. Zhang, and D. Yu, J. Electron. Mater. 38, 20332045 (2009).
http://dx.doi.org/10.1007/s11664-009-0875-3
27.
27. R. Leitsmann, L. E. Ramos, F. Bechstedt, H. Groiss, F. Schäffler, W. Heiss, K. Koike, H. Harada, and M. Yano, New J. Phys. 8, 317317 (2006).
http://dx.doi.org/10.1088/1367-2630/8/12/317
28.
28. H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, and T. Wojtowicz, Appl. Phys. Lett. 91, 222106 (2007).
http://dx.doi.org/10.1063/1.2817951
29.
29. F. W. Wise, Acc. Chem. Res. 33, 773780 (2000).
http://dx.doi.org/10.1021/ar970220q
30.
30.The PbTe dots have diameters of just a few nanometers and behave electronically as zero-dimensional (0D) quantum dots (QD). We will utilize this dimensional classification throughout the main text.
31.
31. M. Szot, K. Dybko, P. Dziawa, L. Kowalczyk, E. Smajek, V. Domukhovski, B. Taliashvili, P. Dłużewski, A. Reszka, B. J. Kowalski, M. Wiater, T. Wojtowicz, and T. Story, Cryst. Growth Des. 11, 47944801 (2011).
http://dx.doi.org/10.1021/cg200404f
32.
32. Y. Pei, A. D. LaLonde, N. A. Heinz, and G. J. Snyder, Adv. Energy Mater. 2, 670675 (2012).
http://dx.doi.org/10.1002/aenm.201100770
33.
33. K. Ahn, K. Biswas, J. He, I. Chung, V. Dravid, and M. G. Kanatzidis, Energy Environ. Sci. 6, 1529 (2013).
http://dx.doi.org/10.1039/c3ee40482j
34.
34. H. Groiss, G. Hesser, W. Heiss, F. Schäffler, R. Leitsmann, F. Bechstedt, K. Koike, and M. Yano, Phys. Rev. B 79, 235331 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.235331
35.
35. R. Leitsmann, L. E. Ramos, and F. Bechstedt, Phys. Rev. B 74, 085309 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.085309
36.
36.Collaboration: Authors and editors of the volumes III/17B-22A-41B, in Cadmium Telluride (CdTe) Lattice Parameter, Thermal Expansion, edited by O. Madelung, U. Rössler, and M. Schulz (SpringerMaterials - The Landolt-Börnstein Database).
http://dx.doi.org/10.1007/10681719_635
37.
37.Collaboration: Authors and editors of the volumes III/17E-17F-41C, in Lead Telluride (PbTe) Crystal Structure, Lattice Parameters, Thermal Expansion, edited by O. Madelung, U. Rössler, and M. Schulz (SpringerMaterials - The Landolt-Börnstein Database).
http://dx.doi.org/10.1007/10681727_711
38.
38. H. E. Cook, D. De Fontaine, and J. E. Hilliard, Acta Metall. 17, 915 (1969).
http://dx.doi.org/10.1016/0001-6160(69)90112-6
39.
39.A seemingly related material system consists of the semimetallic monopnictide ErAs (rs) and the semiconductor InxGa1−xAs (zb). Still, this material system is only partly comparable to our system, because the heats of formation of the involved materials differ strongly. As a consequence, ErAs on In1−xGaxAs grows forthright three-dimensionally, and therefore cannot be brought into the layered initial structure, which we exploited in the PbTe/CdTe system to set well-defined initial conditions for the annealing experiments.
40.
40. K. Koike, T. Hondena, I. Makabea, F. P. Yan, and M. Yano, J. Cryst. Growth 257, 212217 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01465-9
41.
41.See supplementary material at http://dx.doi.org/10.1063/1.4859775 for Experimental Details (S1), Influence of the Surfaces of the TEM Lamellae (S2), Ostwald Ripening (S3), Cahn-Hilliard Model (S4) and for details of the supplementary video files. [Supplementary Material]
42.
42. D. Srolovitz and S. Safran, J. Appl. Phys. 60, 247254 (1986).
http://dx.doi.org/10.1063/1.337689
43.
43. J. Eggers and E. Villermaux, Rep. Prog. Phys. 71, 036601 (2008).
http://dx.doi.org/10.1088/0034-4885/71/3/036601
44.
44. A. M. Higgins and R. A. L. Jones, Nature (London) 404, 476478 (2000).
http://dx.doi.org/10.1038/35006597
45.
45. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 3550 (1961).
http://dx.doi.org/10.1016/0022-3697(61)90054-3
46.
46. C. Wagner, Z. Elektrochem. 65, 581591 (1961).
http://dx.doi.org/10.1002/bbpc.19610650704
47.
47. F. A. Nichols and W. W. Mullins, Trans. Metall. AIME 233, 18401848 (1965).
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4859775
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4859775
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4859775
2014-01-10
2014-08-22

Abstract

The almost completely immiscible PbTe/CdTe heterostructure has recently become a prototype system for self-organized quantum dot formation based on solid-state phase separation. Here, we study by real-time transmission electron microscopy the topological transformations of two-dimensional PbTe-epilayers into, first, a quasi-one-dimensional percolation network and subsequently into zero-dimensional quantum dots. Finally, the dot size distribution coarsens by Ostwald ripening. The whole transformation sequence occurs during all stages in the fully coherent solid state by bulk diffusion. A model based on the numerical solution of the Cahn-Hilliard equation reproduces all relevant morphological and dynamic aspects of the experiments, demonstrating that this standard continuum approach applies to coherent solids down to nanometer dimensions. As the Cahn-Hilliard equation does not depend on atomistic details, the observed morphological transformations are general features of the model. To confirm the topological nature of the observed shape transitions, we developed a parameter-free geometric model. This, together with the Cahn-Hilliard approach, is in qualitative agreement with the experiments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4859775.html;jsessionid=25pqhj7hu5g9m.x-aip-live-03?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4859775&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Real-time observation of nanoscale topological transitions in epitaxial PbTe/CdTe heterostructures
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4859775
10.1063/1.4859775
SEARCH_EXPAND_ITEM