Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. V. A. Shchukin and D. Bimberg, Rev. Mod. Phys. 71, 11251171 (1999).
2. Y. Lin, A. Böker, J. He, K. Sill, H. Xiang, C. Abetz, X. Li, J. Wang, T. Emrick, S. Long, Q. Wang, A. Balazs, and T. P. Russell, Nature (London) 434, 5559 (2005).
3. S. Karim, M. E. Toimil-Molares, A. G. Balogh, W. Ensinger, T. W. Cornelius, E. U. Khan, and R. Neumann, Nanotechnology 17, 5954 (2006).
4. J. S. Huang, W. I. Goldburg, and A. W. Bjerkaas, Phys. Rev. Lett. 32, 921923 (1974).
5. V. Daniel and H. Lipson, Proc. R. Soc. London, Ser. A 181, 368 (1943).
6. V. Daniel and H. Lipson, Proc. R. Soc. London, Ser. A 182, 378 (1944).
7. J. Fan, T. Han, and M. Haataja, J. Chem. Phys. 133, 235101 (2010).
8. S. N. Girard, J. He, C. Li, S. Moses, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nano Lett. 10, 28252831 (2010).
9. G. Reiter, Phys. Rev. Lett. 68, 75 (1992).
10. J. Lian, L. Wang, X. Sun, Q. Yu, and R. C. Ewing, Nano Lett. 6, 10471052 (2006).
11. A. B. Tesler, M. M. Maoz, Y. Feldman, A. Vaskevich, and I. Rubinstein, J. Phys. Chem C 117, 11337 (2013).
12. M. E. Toimil-Molares, L. Röntzsch, W. Sigle, K. Heinig, C. Trautmann, and R. Neumann, Adv. Funct. Mater. 22, 695701 (2012).
13. W. Heiss, H. Groiss, E. Kaufmann, G. Hesser, M. Böberl, G. Springholz, F. Schäffler, K. Koike, H. Harada, and M. Yano, Appl. Phys. Lett. 88, 192109 (2006).
14. T. Dietl, Nature Mater. 5, 673 (2006).
15. S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and T. Dietl, Nature Mater. 6, 440446 (2007).
16. J. Androulakis, I. Todorov, J. He, D.-Y. Chung, V. Dravid, and M. Kanatzidis, J. Am. Chem. Soc. 133, 1092010927 (2011).
17. A. Hochreiner, T. Schwarzl, M. Eibelhuber, W. Heiss, G. Springholz, V. Kolkovsky, G. Karczewski, and T. Wojtowicz, Appl. Phys. Lett. 98, 021106 (2011).
18. A. Tavakkoli K. G., K. W. Gotrik, A. F. Hannon, A. Alexander-Katz, C. A. Ross, and K. K. Berggren, Science 336, 12941298 (2012).
19. P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).
20. J. W. Cahn, J. Chem. Phys. 42, 93 (1965).
21. K. Binder and P. Fratzl, in Phase Transformations in Materials, edited by G. Kostorz (Wiley-VCH, Weinheim, Germany, 2001), Chap. 6.
22. Z. Liu, H. Gao, L. Q. Chen, and K. Cho, Phys. Rev. B 68, 035429 (2003).
23. J. Vollmer, G. K. Auernhammer, and D. Vollmer, Phys. Rev. Lett. 98, 115701 (2007).
24. B. E. Sundquist, Acta Metall. 12, 585 (1964).
25. J. D. Powers and A. M. Glaeser, J. Am. Ceram. Soc. 83, 2297 (2000).
26. Y. Liu, L. Zhang, and D. Yu, J. Electron. Mater. 38, 20332045 (2009).
27. R. Leitsmann, L. E. Ramos, F. Bechstedt, H. Groiss, F. Schäffler, W. Heiss, K. Koike, H. Harada, and M. Yano, New J. Phys. 8, 317317 (2006).
28. H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, and T. Wojtowicz, Appl. Phys. Lett. 91, 222106 (2007).
29. F. W. Wise, Acc. Chem. Res. 33, 773780 (2000).
30.The PbTe dots have diameters of just a few nanometers and behave electronically as zero-dimensional (0D) quantum dots (QD). We will utilize this dimensional classification throughout the main text.
31. M. Szot, K. Dybko, P. Dziawa, L. Kowalczyk, E. Smajek, V. Domukhovski, B. Taliashvili, P. Dłużewski, A. Reszka, B. J. Kowalski, M. Wiater, T. Wojtowicz, and T. Story, Cryst. Growth Des. 11, 47944801 (2011).
32. Y. Pei, A. D. LaLonde, N. A. Heinz, and G. J. Snyder, Adv. Energy Mater. 2, 670675 (2012).
33. K. Ahn, K. Biswas, J. He, I. Chung, V. Dravid, and M. G. Kanatzidis, Energy Environ. Sci. 6, 1529 (2013).
34. H. Groiss, G. Hesser, W. Heiss, F. Schäffler, R. Leitsmann, F. Bechstedt, K. Koike, and M. Yano, Phys. Rev. B 79, 235331 (2009).
35. R. Leitsmann, L. E. Ramos, and F. Bechstedt, Phys. Rev. B 74, 085309 (2006).
36.Collaboration: Authors and editors of the volumes III/17B-22A-41B, in Cadmium Telluride (CdTe) Lattice Parameter, Thermal Expansion, edited by O. Madelung, U. Rössler, and M. Schulz (SpringerMaterials - The Landolt-Börnstein Database).
37.Collaboration: Authors and editors of the volumes III/17E-17F-41C, in Lead Telluride (PbTe) Crystal Structure, Lattice Parameters, Thermal Expansion, edited by O. Madelung, U. Rössler, and M. Schulz (SpringerMaterials - The Landolt-Börnstein Database).
38. H. E. Cook, D. De Fontaine, and J. E. Hilliard, Acta Metall. 17, 915 (1969).
39.A seemingly related material system consists of the semimetallic monopnictide ErAs (rs) and the semiconductor InxGa1−xAs (zb). Still, this material system is only partly comparable to our system, because the heats of formation of the involved materials differ strongly. As a consequence, ErAs on In1−xGaxAs grows forthright three-dimensionally, and therefore cannot be brought into the layered initial structure, which we exploited in the PbTe/CdTe system to set well-defined initial conditions for the annealing experiments.
40. K. Koike, T. Hondena, I. Makabea, F. P. Yan, and M. Yano, J. Cryst. Growth 257, 212217 (2003).
41.See supplementary material at for Experimental Details (S1), Influence of the Surfaces of the TEM Lamellae (S2), Ostwald Ripening (S3), Cahn-Hilliard Model (S4) and for details of the supplementary video files. [Supplementary Material]
42. D. Srolovitz and S. Safran, J. Appl. Phys. 60, 247254 (1986).
43. J. Eggers and E. Villermaux, Rep. Prog. Phys. 71, 036601 (2008).
44. A. M. Higgins and R. A. L. Jones, Nature (London) 404, 476478 (2000).
45. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 3550 (1961).
46. C. Wagner, Z. Elektrochem. 65, 581591 (1961).
47. F. A. Nichols and W. W. Mullins, Trans. Metall. AIME 233, 18401848 (1965).

Data & Media loading...


Article metrics loading...



The almost completely immiscible PbTe/CdTe heterostructure has recently become a prototype system for self-organized quantum dot formation based on solid-state phase separation. Here, we study by real-time transmission electron microscopy the topological transformations of two-dimensional PbTe-epilayers into, first, a quasi-one-dimensional percolation network and subsequently into zero-dimensional quantum dots. Finally, the dot size distribution coarsens by Ostwald ripening. The whole transformation sequence occurs during all stages in the fully coherent solid state by bulk diffusion. A model based on the numerical solution of the Cahn-Hilliard equation reproduces all relevant morphological and dynamic aspects of the experiments, demonstrating that this standard continuum approach applies to coherent solids down to nanometer dimensions. As the Cahn-Hilliard equation does not depend on atomistic details, the observed morphological transformations are general features of the model. To confirm the topological nature of the observed shape transitions, we developed a parameter-free geometric model. This, together with the Cahn-Hilliard approach, is in qualitative agreement with the experiments.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd