1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4861795
1.
1. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
2.
2. N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).
http://dx.doi.org/10.1126/science.1113357
3.
3. M. Bibes and A. Barthelemy, Nat. Mater. 7, 425 (2008).
http://dx.doi.org/10.1038/nmat2189
4.
4. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature (London) 429, 392 (2004).
http://dx.doi.org/10.1038/nature02572
5.
5. S. Dong, J. Zhai, F. Bai, J. F. Li, and D. Viehland, Appl. Phys. Lett. 87, 062502 (2005).
http://dx.doi.org/10.1063/1.2007868
6.
6. J. Ryu, S. Priya, K. Uchino, and H. E. Kim, J. Electroceram. 8, 107 (2002).
http://dx.doi.org/10.1023/A:1020599728432
7.
7. S. Shastry, G. Srinivasan, M. I. Bichurin, V. M. Petrov, and A. S. Tatarenko, Phys. Rev. B 70, 064416 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.064416
8.
8. A. S. Tatarenko, V. Gheevarughese, and G. Srinivasan, Electron. Lett. 42, 540 (2006).
http://dx.doi.org/10.1049/el:20060167
9.
9. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
http://dx.doi.org/10.1021/jp000114x
10.
10. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
11.
11. R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).
http://dx.doi.org/10.1038/nmat1805
12.
12. H. L. Yakel, E. F. Forrat, E. F. Bertaut, and W. C. Koehler, Acta Crystallogr. 16, 957 (1963).
http://dx.doi.org/10.1107/S0365110X63002589
13.
13. K. Lukaszew and J. Karutkal, Ferroelectrics 7, 81 (1974).
http://dx.doi.org/10.1080/00150197408237954
14.
14. C. J. Fennie and K. M. Rabe, Phys. Rev. B 72, 100103 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.100103
15.
15. C. Ederer and C. J. Fennie, J. Phys.: Condens. Matter 20, 434219 (2008).
http://dx.doi.org/10.1088/0953-8984/20/43/434219
16.
16. C. J. Fennie, Phys. Rev. Lett. 100, 167203 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.167203
17.
17. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kito, Nature (London) 436, 1136 (2005).
http://dx.doi.org/10.1038/nature04039
18.
18. J. de Groot, T. Mueller, R. A. Rosenberg, D. J. Keavney, Z. Islam, J. W. Kim, and M. Angst, Phys. Rev. Lett. 108, 187601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.187601
19.
19. A. Ruff, S. Krohns, F. Schrettle, V. Tsurkan, P. Lunkenheimer, and A. Loidl, Eur. Phys. J. B 85, 290 (2012).
http://dx.doi.org/10.1140/epjb/e2012-30296-6
20.
20. J. A. Mundy, Q. Y. Mao, C. M. Brooks, D. G. Schlom, and D. A. Muller, Appl. Phys. Lett. 101, 042907 (2012).
http://dx.doi.org/10.1063/1.4737208
21.
21. A. A. Bossak, I. E. Graboy, O. Y. Gorbenko, A. R. Kaul, M. S. Kartavtseva, V. L. Svetchnikov, and H. W. Zandbergen, Chem. Mater. 16, 1751 (2004).
http://dx.doi.org/10.1021/cm0353660
22.
22. Y. K. Jeong, J. H. Lee, S. J. Ahn, and H. M. Jang, Chem. Mater. 24, 2426 (2012).
http://dx.doi.org/10.1021/cm300846j
23.
23. W. Wang, J. Zhao, W. Wang, Z. Gai, N. Balke, M. Chi, H. N. Lee, W. Tian, L. Zhu, X. Cheng, D. J. Keavney, J. Yi, T. Z. Ward, P. C. Snijders, H. M. Christen, W. Wu, J. Shen, and X. Xu, Phys. Rev. Lett. 110, 237601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.237601
24.
24. A. R. Akbashev, A. S. Semisalova, N. S. Perov, and A. R. Kaul, Appl. Phys. Lett. 99, 122502 (2011).
http://dx.doi.org/10.1063/1.3643043
25.
25. H. Das, A. L. Wysocki, Y. Geng, W. Wu, and C. J. Fennie, Nat. Comm. 5, 2998 (2014).
http://dx.doi.org/10.1038%2Fncomms3998
26.
26. A. A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, S. Niitaka, M. Azuma, Y. Shimakawa, M. Takano, F. Izumi, and E. Takayama-Muromachi, Chem. Mater. 18, 798 (2006).
http://dx.doi.org/10.1021/cm052334z
27.
27. M. R. Li, U. Adem, S. R. C. McMitchell, Z. L. Xu, C. I. Thomas, J. E. Warren, D. V. Giap, H. J. Niu, X. M. Wan, R. G. Palgrave, F. Schiffmann, F. Cora, B. Slater, T. L. Burnett, M. G. Cain, A. M. Abakumov, G. van Tendeloo, M. F. Thomas, M. J. Rosseinsky, and J. B. Claridge, J. Am. Chem. Soc. 134, 3737 (2012).
http://dx.doi.org/10.1021/ja208395z
28.
28. J. B. Nelson and D. P. Riley, Proc. Phys. Soc. London 57, 160 (1945).
http://dx.doi.org/10.1088/0959-5309/57/3/302
29.
29. P. A. van Aken, B. Liebscher, and V. J. Styrsa, Phys. Chem. Min. 25, 323 (1998).
http://dx.doi.org/10.1007/s002690050122
30.
30. A. R. Akbashev, V. V. Roddatis, A. L. Vasiliev, S. Lopatin, V. A. Amelichev, and A. R. Kaul, Sci. Rep. 2, 672 (2012).
http://dx.doi.org/10.1038/srep00672
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4861795
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4861795
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4861795
2014-01-21
2014-08-22

Abstract

We used oxide molecular-beam epitaxy in a composition-spread geometry to deposit hexagonal LuFeO (-LuFeO) thin films with a monotonic variation in the Lu/Fe cation ratio, creating a mosaic of samples that ranged from iron rich to lutetium rich. We characterized the effects of composition variation with x-ray diffraction, atomic force microscopy, scanning transmission electron microscopy, and superconducting quantum interference device magnetometry. After identifying growth conditions leading to stoichiometric film growth, an additional sample was grown with a rotating sample stage. From this stoichiometric sample, we determined stoichiometric -LuFeO to have a = 147 K and = 0.018 /Fe.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4861795.html;jsessionid=ihhs072slg06.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4861795&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Intrinsic magnetic properties of hexagonal LuFeO3 and the effects of nonstoichiometry
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4861795
10.1063/1.4861795
SEARCH_EXPAND_ITEM