Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).
2. N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).
3. M. Bibes and A. Barthelemy, Nat. Mater. 7, 425 (2008).
4. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature (London) 429, 392 (2004).
5. S. Dong, J. Zhai, F. Bai, J. F. Li, and D. Viehland, Appl. Phys. Lett. 87, 062502 (2005).
6. J. Ryu, S. Priya, K. Uchino, and H. E. Kim, J. Electroceram. 8, 107 (2002).
7. S. Shastry, G. Srinivasan, M. I. Bichurin, V. M. Petrov, and A. S. Tatarenko, Phys. Rev. B 70, 064416 (2004).
8. A. S. Tatarenko, V. Gheevarughese, and G. Srinivasan, Electron. Lett. 42, 540 (2006).
9. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
10. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
11. R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).
12. H. L. Yakel, E. F. Forrat, E. F. Bertaut, and W. C. Koehler, Acta Crystallogr. 16, 957 (1963).
13. K. Lukaszew and J. Karutkal, Ferroelectrics 7, 81 (1974).
14. C. J. Fennie and K. M. Rabe, Phys. Rev. B 72, 100103 (2005).
15. C. Ederer and C. J. Fennie, J. Phys.: Condens. Matter 20, 434219 (2008).
16. C. J. Fennie, Phys. Rev. Lett. 100, 167203 (2008).
17. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kito, Nature (London) 436, 1136 (2005).
18. J. de Groot, T. Mueller, R. A. Rosenberg, D. J. Keavney, Z. Islam, J. W. Kim, and M. Angst, Phys. Rev. Lett. 108, 187601 (2012).
19. A. Ruff, S. Krohns, F. Schrettle, V. Tsurkan, P. Lunkenheimer, and A. Loidl, Eur. Phys. J. B 85, 290 (2012).
20. J. A. Mundy, Q. Y. Mao, C. M. Brooks, D. G. Schlom, and D. A. Muller, Appl. Phys. Lett. 101, 042907 (2012).
21. A. A. Bossak, I. E. Graboy, O. Y. Gorbenko, A. R. Kaul, M. S. Kartavtseva, V. L. Svetchnikov, and H. W. Zandbergen, Chem. Mater. 16, 1751 (2004).
22. Y. K. Jeong, J. H. Lee, S. J. Ahn, and H. M. Jang, Chem. Mater. 24, 2426 (2012).
23. W. Wang, J. Zhao, W. Wang, Z. Gai, N. Balke, M. Chi, H. N. Lee, W. Tian, L. Zhu, X. Cheng, D. J. Keavney, J. Yi, T. Z. Ward, P. C. Snijders, H. M. Christen, W. Wu, J. Shen, and X. Xu, Phys. Rev. Lett. 110, 237601 (2013).
24. A. R. Akbashev, A. S. Semisalova, N. S. Perov, and A. R. Kaul, Appl. Phys. Lett. 99, 122502 (2011).
25. H. Das, A. L. Wysocki, Y. Geng, W. Wu, and C. J. Fennie, Nat. Comm. 5, 2998 (2014).
26. A. A. Belik, S. Iikubo, K. Kodama, N. Igawa, S. Shamoto, S. Niitaka, M. Azuma, Y. Shimakawa, M. Takano, F. Izumi, and E. Takayama-Muromachi, Chem. Mater. 18, 798 (2006).
27. M. R. Li, U. Adem, S. R. C. McMitchell, Z. L. Xu, C. I. Thomas, J. E. Warren, D. V. Giap, H. J. Niu, X. M. Wan, R. G. Palgrave, F. Schiffmann, F. Cora, B. Slater, T. L. Burnett, M. G. Cain, A. M. Abakumov, G. van Tendeloo, M. F. Thomas, M. J. Rosseinsky, and J. B. Claridge, J. Am. Chem. Soc. 134, 3737 (2012).
28. J. B. Nelson and D. P. Riley, Proc. Phys. Soc. London 57, 160 (1945).
29. P. A. van Aken, B. Liebscher, and V. J. Styrsa, Phys. Chem. Min. 25, 323 (1998).
30. A. R. Akbashev, V. V. Roddatis, A. L. Vasiliev, S. Lopatin, V. A. Amelichev, and A. R. Kaul, Sci. Rep. 2, 672 (2012).

Data & Media loading...


Article metrics loading...



We used oxide molecular-beam epitaxy in a composition-spread geometry to deposit hexagonal LuFeO (-LuFeO) thin films with a monotonic variation in the Lu/Fe cation ratio, creating a mosaic of samples that ranged from iron rich to lutetium rich. We characterized the effects of composition variation with x-ray diffraction, atomic force microscopy, scanning transmission electron microscopy, and superconducting quantum interference device magnetometry. After identifying growth conditions leading to stoichiometric film growth, an additional sample was grown with a rotating sample stage. From this stoichiometric sample, we determined stoichiometric -LuFeO to have a = 147 K and = 0.018 /Fe.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd