1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4861796
1.
1. K. Esfarjani, G. Chen, and H. T. Stokes, Phys. Rev. B 84, 085204 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.085204
2.
2. K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. H. McGaughey, and J. A. Malen, Nat. Commun. 4, 1640 (2013).
http://dx.doi.org/10.1038/ncomms2630
3.
3. Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357376 (2010).
http://dx.doi.org/10.1002/adfm.200901512
4.
4. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).
http://dx.doi.org/10.1039/b822664b
5.
5. C. J. Glassbrenner and G. A. Slack, Phys. Rev. 134, A1058A1069 (1964).
http://dx.doi.org/10.1103/PhysRev.134.A1058
6.
6. M. Maldovan, Phys. Rev. Lett. 110, 025902 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.025902
7.
7. E. Dechaumphai and R. Chen, J. Appl. Phys. 111, 073508 (2012).
http://dx.doi.org/10.1063/1.3699056
8.
8. C. M. Reinke, M. F. Su, B. L. Davis, B. Kim, M. I. Hussein, Z. C. Leseman, R. H. Olsson III, and I. El-Kady, AIP Adv. 1, 041403 (2011).
http://dx.doi.org/10.1063/1.3675918
9.
9. P. E. Hopkins, L. M. Phinney, P. T. Rakich, R. H. Olsson, and I. El-Kady, Appl. Phys. A 103, 575579 (2010).
http://dx.doi.org/10.1007/s00339-010-6189-8
10.
10. J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J. R. Heath, Nat. Nanotechnol. 5, 718721 (2010).
http://dx.doi.org/10.1038/nnano.2010.149
11.
11. A. Shchepetov, M. Prunnila, F. Alzina, L. Schneider, J. Cuffe, H. Jiang, E. I. Kauppinen, C. M. S. Torres, and J. Ahopelto, Appl. Phys. Lett. 102, 192108 (2013).
http://dx.doi.org/10.1063/1.4807130
12.
12. A. Balandin and K. Wang, Phys. Rev. B 58, 15441549 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.1544
13.
13. M.-J. Huang, T.-M. Chang, W.-Y. Chong, C.-K. Liu, and C.-K. Yu, Int. J. Heat Mass Transfer 50, 6774 (2007).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.06.044
14.
14. X. , J. Appl. Phys. 104, 054314 (2008).
http://dx.doi.org/10.1063/1.2976314
15.
15. G. H. Tang, Y. Zhao, G. X. Zhai, and C. Bi, J. Appl. Phys. 110, 046102 (2011).
http://dx.doi.org/10.1063/1.3622317
16.
16. W. Liu and M. Asheghi, Appl. Phys. Lett. 84, 3819 (2004).
http://dx.doi.org/10.1063/1.1741039
17.
17. P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, Phys. Rev. Lett. 102, 125503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.125503
18.
18. P. Hyldgaard and G. D. Mahan, in Thermal Conductivity, edited by K. E. Wilkes, R. B. Dinwiddie, and R. S. Graves (Technomics, 1996), Vol. 23, pp. 172182.
19.
19. J. Tang, H.-T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell, and P. Yang, Nano Lett. 10, 42794283 (2010).
http://dx.doi.org/10.1021/nl102931z
20.
20. H. Wada and T. Kamijoh, Jpn. J. Appl. Phys. 35, L648L650 (1996).
http://dx.doi.org/10.1143/JJAP.35.L648
21.
21. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).
http://dx.doi.org/10.1063/1.1616981
22.
22. J. Lim, K. Hippalgaonkar, S. C. Andrews, A. Majumdar, and P. Yang, Nano Lett. 12, 24752482 (2012).
http://dx.doi.org/10.1021/nl3005868
23.
23. D. L. Nika, E. P. Pokatilov, A. A. Balandin, V. M. Fomin, A. Rastelli, and O. G. Schmidt, Phys. Rev. B 84, 165415 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165415
24.
24. D. L. Nika, A. I. Cocemasov, C. I. Isacova, A. A. Balandin, V. M. Fomin, and O. G. Schmidt, Phys. Rev. B 85, 205439 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205439
25.
25. D. L. Nika, A. I. Cocemasov, D. V. Crismari, and A. A. Balandin, Appl. Phys. Lett. 102, 213109 (2013).
http://dx.doi.org/10.1063/1.4807389
26.
26. M. Asheghi, Y. K. Leung, S. S. Wong, and K. E. Goodson, Appl. Phys. Lett. 71, 1798 (1997).
http://dx.doi.org/10.1063/1.119402
27.
27. M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, J. Heat Transfer 120, 30 (1998).
http://dx.doi.org/10.1115/1.2830059
28.
28. Y. S. Ju and K. E. Goodson, Appl. Phys. Lett. 74, 3005 (1999).
http://dx.doi.org/10.1063/1.123994
29.
29. W. Liu and M. Asheghi, J. Appl. Phys. 98, 123523 (2005).
http://dx.doi.org/10.1063/1.2149497
30.
30. X. Liu, X. Wu, and T. Ren, Appl. Phys. Lett. 98, 174104 (2011).
http://dx.doi.org/10.1063/1.3583603
31.
31. A. A. Balandin, Nature Mater. 10, 569581 (2011).
http://dx.doi.org/10.1038/nmat3064
32.
32. M. G. Burzo, P. L. Komarov, and P. E. Raad, in Proceedings of the ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems Cat. No.02CH37258 (IEEE, 2002), pp. 142149.
33.
33. M. G. Burzo, P. L. Komarov, and P. E. Raad, Microelectron. J. 33, 697703 (2002).
http://dx.doi.org/10.1016/S0026-2692(02)00052-6
34.
34. A. J. Schmidt, R. Cheaito, and M. Chiesa, Rev. Sci. Instrum. 80, 094901 (2009).
http://dx.doi.org/10.1063/1.3212673
35.
35. J. E. Graebner, Rev. Sci. Instrum. 66, 3903 (1995).
http://dx.doi.org/10.1063/1.1145391
36.
36. J. A. Johnson, A. A. Maznev, J. Cuffe, J. K. Eliason, A. J. Minnich, T. Kehoe, C. M. S. Torres, G. Chen, and K. A. Nelson, Phys. Rev. Lett. 110, 025901 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.025901
37.
37. J. Cuffe, O. Ristow, E. Chávez, A. Shchepetov, P.-O. Chapuis, F. Alzina, M. Hettich, M. Prunnila, J. Ahopelto, T. Dekorsy, and C. M. S. Torres, Phys. Rev. Lett. 110, 095503 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.095503
38.
38. J. Cuffe, E. Chávez, A. Shchepetov, P.-O. Chapuis, E. H. El Boudouti, F. Alzina, T. Kehoe, J. Gomis-Bresco, D. Dudek, Y. Pennec, B. Djafari-Rouhani, M. Prunnila, J. Ahopelto, and C. M. S. Torres, Nano Lett. 12, 35693573 (2012).
http://dx.doi.org/10.1021/nl301204u
39.
39. Group IV Elements, IV-IV and III-V Compounds. Part a – Lattice Properties, edited by O. Madelung, U. Rössler, and M. Schulz (Springer-Verlag, Berlin/Heidelberg, 2001), Vol. A.
40.
40. S. Chen, Q. Li, Q. Zhang, Y. Qu, H. Ji, R. S. Ruoff, and W. Cai, Nanotechnology 23, 365701 (2012).
http://dx.doi.org/10.1088/0957-4484/23/36/365701
41.
41. J.-U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, Phys. Rev. B 83, 081419 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.081419
42.
42. S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, ACS Nano 5, 321328 (2011).
http://dx.doi.org/10.1021/nn102915x
43.
43. P. Dario, in Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2007), pp. 859863.
44.
44. S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, Nature Mater. 11, 203207 (2012).
http://dx.doi.org/10.1038/nmat3207
45.
45. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902907 (2008).
http://dx.doi.org/10.1021/nl0731872
46.
46. J. Šik, J. Hora, and J. Humlíček, J. Appl. Phys. 84, 6291 (1998).
http://dx.doi.org/10.1063/1.368951
47.
47.See supplementary material at http://dx.doi.org/10.1063/1.4861796 for a detailed description of the calculations. The thickness dependence of the thermal conductivity is described through the Fuchs-Sondheimer model. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4861796
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4861796
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4861796
2014-01-31
2014-09-30

Abstract

We report on the reduction of the thermal conductivity in ultra-thin suspended Si membranes with high crystalline quality. A series of membranes with thicknesses ranging from 9 nm to 1.5 μm was investigated using Raman thermometry, a novel contactless technique for thermal conductivity determination. A systematic decrease in the thermal conductivity was observed as reducing the thickness, which is explained using the Fuchs-Sondheimer model through the influence of phonon boundary scattering at the surfaces. The thermal conductivity of the thinnest membrane with = 9 nm resulted in (9 ± 2) W/mK, thus approaching the amorphous limit but still maintaining a high crystalline quality.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4861796.html;jsessionid=b3d8bmh359lhh.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4861796&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater

Most read this month

Article
content/aip/journal/aplmater
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4861796
10.1063/1.4861796
SEARCH_EXPAND_ITEM