Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/2/1/10.1063/1.4861797
1.
1. A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature 419, 378 (2002).
http://dx.doi.org/10.1038/nature00977
2.
2. A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6, 493 (2007).
http://dx.doi.org/10.1038/nmat1931
3.
3. C. Aruta, S. Amoruso, R. Bruzzese, X. Wang, D. Maccariello, F. M. Granozio, and U. S. di Uccio, Appl. Phys. Lett. 97, 252105 (2010).
http://dx.doi.org/10.1063/1.3529487
4.
4. A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
5.
5. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
http://dx.doi.org/10.1126/science.1131091
6.
6. N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nat. Mater. 5, 204 (2006).
http://dx.doi.org/10.1038/nmat1569
7.
7. A. Kalabukhov, R. Gunnarsson, J. Börjesson, E. Olsson, T. Claeson, and D. Winkler, Phys. Rev. B 75, 121404R (2007).
http://dx.doi.org/10.1103/PhysRevB.75.121404
8.
8. W. Siemons, G. Koster, H. Yamamoto, W. Harrison, G. Lucovsky, T. Geballe, D. Blank, and M. Beasley, Phys. Rev. Lett. 98, 196802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.196802
9.
9. Y. Chen, N. Pryds, J. E. Kleibeuker, G. Koster, J. Sun, E. Stamate, B. Shen, G. Rijnders, and S. Linderoth, Nano Lett. 11, 3774 (2011).
http://dx.doi.org/10.1021/nl201821j
10.
10. P. R. Willmott, S. A. Pauli, R. Herger, C. M. Schlepütz, D. Martoccia, B. D. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, and Y. Yacoby, Phys. Rev. Lett. 99, 155502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.155502
11.
11. A. S. Kalabukhov, Y. A. Boikov, I. T. Serenkov, V. I. Sakharov, V. N. Popok, R. Gunnarsson, J. Börjesson, N. Ljustina, E. Olsson, D. Winkler, and T. Claeson, Phys. Rev. Lett. 103, 146101 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.146101
12.
12. L. Qiao, T. C. Droubay, V. Shutthanandan, Z. Zhu, P. V. Sushko, and S. A. Chambers, J. Phys.: Condens. Matter 22, 312201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/31/312201
13.
13. S. A. Chambers, M. Engelhard, V. Shutthanandan, Z. Zhu, T. Droubay, L. Qiao, P. Sushko, T. Feng, H. Lee, T. Gustafsson, E. Garfunkel, A. Shah, J.-M. Zuo, and Q. Ramasse, Surf. Sci. Rep. 65, 317 (2010).
http://dx.doi.org/10.1016/j.surfrep.2010.09.001
14.
14. S. A. Chambers, Surf. Sci. 605, 1133 (2011).
http://dx.doi.org/10.1016/j.susc.2011.04.011
15.
15. V. Vonk, M. Huijben, K. Driessen, P. Tinnemans, A. Brinkman, S. Harkema, and H. Graafsma, Phys. Rev. B 75, 235417 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235417
16.
16. V. Vonk, J. Huijben, D. Kukuruznyak, A. Stierle, H. Hilgenkamp, A. Brinkman, and S. Harkema, Phys. Rev. B 85, 045401 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.045401
17.
17. C. Cantoni, J. Gazquez, F. Miletto Granozio, M. P. Oxley, M. Varela, A. R. Lupini, S. J. Pennycook, C. Aruta, U. S. di Uccio, P. Perna, and D. Maccariello, Adv. Mater. 24, 3952 (2012).
http://dx.doi.org/10.1002/adma.201200667
18.
18. E. Di Gennaro, U. S. di Uccio, C. Aruta, C. Cantoni, A. Gadaleta, A. R. Lupini, D. Maccariello, D. Marr, I. Pallecchi, D. Paparo, P. Perna, M. Riaz, and F. M. Granozio, Adv. Opt. Mater. 1, 834 (2013).
http://dx.doi.org/10.1002/adom.201300150
19.
19. F. Gunkel, K. Skaja, A. Shkabko, R. Dittmann, S. Hoffmann-Eifert, and R. Waser, Appl. Phys. Lett. 102, 071601 (2013).
http://dx.doi.org/10.1063/1.4792509
20.
20. H. Dulli, P. A. Dowben, S.-H. Liou, and E. W. Plummer, Phys. Rev. B 62, R14629 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R14629
21.
21. A. Gunhold, K. Gömann, L. Beuermann, M. Frerichs, G. Borchardt, V. Kempter, and W. Maus-Friedrichs, Surf. Sci. 507–510, 447 (2002).
http://dx.doi.org/10.1016/S0039-6028(02)01284-0
22.
22. W. Jung and H. L. Tuller, Energy Environ. Sci. 5, 5370 (2012).
http://dx.doi.org/10.1039/c1ee02762j
23.
23. M. Radovic, M. Salluzzo, Z. Ristic, R. Di Capua, N. Lampis, R. Vaglio, and F. Miletto Granozio, J. Chem. Phys. 135, 034705 (2011).
http://dx.doi.org/10.1063/1.3613637
24.
24. R. Ciancio, E. Carlino, C. Aruta, D. Maccariello, F. M. Granozio, and U. Scotti di Uccio, Nanoscale 4, 91 (2012).
http://dx.doi.org/10.1039/c1nr11015b
25.
25. F. Gunkel, P. Brinks, S. Hoffmann-Eifert, R. Dittmann, M. Huijben, J. E. Kleibeuker, G. Koster, G. Rijnders, and R. Waser, Appl. Phys. Lett. 100, 052103 (2012).
http://dx.doi.org/10.1063/1.3679139
26.
26. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 35, 268 (2003).
http://dx.doi.org/10.1002/sia.1526
27.
27. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).
http://dx.doi.org/10.1016/0092-640X(85)90016-6
28.
28. C. Aruta, S. Amoruso, G. Ausanio, R. Bruzzese, E. Di Gennaro, M. Lanzano, F. Miletto Granozio, M. Riaz, A. Sambri, U. Scotti di Uccio, and X. Wang, Appl. Phys. Lett. 101, 031602 (2012).
http://dx.doi.org/10.1063/1.4737650
29.
29.Substrate related spurious Si intensity has been observed for low λ. The Si 2p line partly superimposes the La 4d line but can be removed by fitting with sufficient accuracy.
30.
30. M. Takizawa, S. Tsuda, T. Susaki, H. Y. Hwang, and A. Fujimori, Phys. Rev. B 84, 245124 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.245124
31.
31. G. Drera, G. Salvinelli, A. Brinkman, M. Huijben, G. Koster, H. Hilgenkamp, G. Rijnders, D. Visentin, and L. Sangaletti, Phys. Rev. B 87, 075435 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075435
32.
32. K. Szot, W. Speier, U. Breuer, R. Meyer, J. Szade, and R. Waser, Surf. Sci. 460, 112 (2000).
http://dx.doi.org/10.1016/S0039-6028(00)00522-7
33.
33. P. van der Heide, Q. Jiang, Y. Kim, and J. Rabalais, Surf. Sci. 473, 59 (2001).
http://dx.doi.org/10.1016/S0039-6028(00)00954-7
34.
34. R. Vasquez, J. Electron Spectrosc. Relat. Phenom. 56, 217 (1991).
http://dx.doi.org/10.1016/0368-2048(91)85005-E
35.
35. N. Menou, M. Popovici, S. Clima, K. Opsomer, W. Polspoel, B. Kaczer, G. Rampelberg, K. Tomida, M. A. Pawlak, C. Detavernier, D. Pierreux, J. Swerts, J. W. Maes, D. Manger, M. Badylevich, V. Afanasiev, T. Conard, P. Favia, H. Bender, B. Brijs, W. Vandervorst, S. V. Elshocht, G. Pourtois, D. J. Wouters, S. Biesemans, and J. A. Kittl, J. Appl. Phys. 106, 094101 (2009).
http://dx.doi.org/10.1063/1.3246835
36.
36. K. Yoshimatsu, R. Yasuhara, H. Kumigashira, and M. Oshima, Phys. Rev. Lett. 101, 026802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026802
37.
37. Y. Segal, J. H. Ngai, J. W. Reiner, F. J. Walker, and C. H. Ahn, Phys. Rev. B 80, 241107 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.241107
38.
38. E. Slooten, Z. Zhong, H. J. A. Molegraaf, P. D. Eerkes, S. de Jong, F. Massee, E. van Heumen, M. K. Kruize, S. Wenderich, J. E. Kleibeuker, M. Gorgoi, H. Hilgenkamp, A. Brinkman, M. Huijben, G. Rijnders, D. H. A. Blank, G. Koster, P. J. Kelly, and M. S. Golden, Phys. Rev. B 87, 085128 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.085128
39.
39. M. P. Warusawithana, C. Richter, J. A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A. A. Pawlicki, L. F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J. N. Eckstein, D. A. Muller, C. Stephen Hellberg, J. Mannhart, and D. G. Schlom, Nat. Commun. 4, 2351 (2013).
http://dx.doi.org/10.1038/ncomms3351
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4861797
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4861797
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4861797
2014-01-24
2016-09-29

Abstract

LaAlO and NdGaO thin films of different thicknesses have been grown by pulsed laser deposition on TiO-terminated SrTiO single crystals and investigated by soft X-ray photoemission spectroscopy. The surface sensitivity of the measurements has been tuned by varying photon energy ν and emission angle Θ. In contrast to the core levels of the other elements, the Sr 3 line shows an unexpected splitting for higher surface sensitivity, signaling the presence of a second strontium component. From our quantitative analysis we conclude that during the growth process Sr atoms diffuse away from the substrate and segregate at the surface of the heterostructure, possibly forming strontium oxide.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4861797.html;jsessionid=1wDP_FVPpRGWSu23E_iKNS8R.x-aip-live-02?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4861797&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/2/1/10.1063/1.4861797&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/2/1/10.1063/1.4861797'
Top,Right1,Right2,Right3,