1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/aplmater/2/1/10.1063/1.4861798
1.
1. J. R. Swierk and T. E. Mallouk, Chem. Soc. Rev. 42(6), 2357 (2013).
http://dx.doi.org/10.1039/c2cs35246j
2.
2. J. Z. Zhang, MRS Bull. 36(1), 48 (2011).
http://dx.doi.org/10.1557/mrs.2010.9
3.
3. S. C. Tsang, J. B. Claridge, and M. L. H. Green, Catal. Today 23(1), 3 (1995).
http://dx.doi.org/10.1016/0920-5861(94)00080-L
4.
4. M. T. Mayer, Y. J. Lin, G. B. Yuan, and D. W. Wang, Acc. Chem. Res. 46(7), 1558 (2013).
http://dx.doi.org/10.1021/ar300302z
5.
5. F. E. Osterloh and B. A. Parkinson, MRS Bull. 36(1), 17 (2011).
http://dx.doi.org/10.1557/mrs.2010.5
6.
6. A. Fujishima and K. Honda, Nature (London) 238(5358), 37 (1972).
http://dx.doi.org/10.1038/238037a0
7.
7. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, Int. J. Hydrogen Energy 27(10), 991 (2002).
http://dx.doi.org/10.1016/S0360-3199(02)00022-8
8.
8. K. Sivula, J. Phys. Chem. Lett. 4(10), 1624 (2013).
http://dx.doi.org/10.1021/jz4002983
9.
9. C. X. Kronawitter, L. Vayssieres, S. H. Shen, L. J. Guo, D. A. Wheeler, J. Z. Zhang, B. R. Antoun, and S. S. Mao, Energy Environ. Sci. 4(10), 3889 (2011).
http://dx.doi.org/10.1039/c1ee02186a
10.
10. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev. 110(11), 6446 (2010).
http://dx.doi.org/10.1021/cr1002326
11.
11. J. W. Sun, D. K. Zhong, and D. R. Gamelin, Energy Environ. Sci. 3(9), 1252 (2010).
http://dx.doi.org/10.1039/c0ee00030b
12.
12. J. Augustynski, B. D. Alexander, and R. Solarska, in Photocatalysis, edited by C. A. Bignozzi (Springer-Verlag, Berlin, 2011), Vol. 303, p. 1.
13.
13. Y. J. Lin, G. B. Yuan, R. Liu, S. Zhou, S. W. Sheehan, and D. W. Wang, Chem. Phys. Lett. 507(4–6), 209 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.03.074
14.
14. Z. S. Li, W. J. Luo, M. L. Zhang, J. Y. Feng, and Z. G. Zou, Energy Environ. Sci. 6(2), 347 (2013).
http://dx.doi.org/10.1039/c2ee22618a
15.
15. S. Choudhary, S. Upadhyay, P. Kumar, N. Singh, V. R. Satsangi, R. Shrivastav, and S. Dass, Int. J. Hydrogen Energy 37(24), 18713 (2012).
http://dx.doi.org/10.1016/j.ijhydene.2012.10.028
16.
16. F. E. Osterloh, Chem. Soc. Rev. 42(6), 2294 (2013).
http://dx.doi.org/10.1039/c2cs35266d
17.
17. R. van de Krol, Y. Q. Liang, and J. Schoonman, J. Mater. Chem. 18(20), 2311 (2008).
http://dx.doi.org/10.1039/b718969a
18.
18. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38(1), 253 (2009).
http://dx.doi.org/10.1039/b800489g
19.
19. J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003).
20.
20. J. M. Spurgeon, H. A. Atwater, and N. S. Lewis, J. Phys. Chem. C 112(15), 6186 (2008).
http://dx.doi.org/10.1021/jp077481u
21.
21. N. Beermann, L. Vayssieres, S. E. Lindquist, and A. Hagfeldt, J. Electrochem. Soc. 147(7), 2456 (2000).
http://dx.doi.org/10.1149/1.1393553
22.
22. T. Lindgren, H. L. Wang, N. Beermann, L. Vayssieres, A. Hagfeldt, and S. E. Lindquist, Sol. Energy Mat. Sol. Cells 71(2), 231 (2002).
http://dx.doi.org/10.1016/S0927-0248(01)00062-9
23.
23. A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, Small 5(1), 104 (2009).
http://dx.doi.org/10.1002/smll.200800902
24.
24. S. U. M. Khan and T. Sultana, Sol. Energy Mat. Sol. Cells 76(2), 211 (2003).
http://dx.doi.org/10.1016/S0927-0248(02)00394-X
25.
25. K. S. Ahn, S. Shet, T. Deutsch, C. S. Jiang, Y. F. Yan, M. Al-Jassim, and J. Turner, J. Power Sources 176(1), 387 (2008).
http://dx.doi.org/10.1016/j.jpowsour.2007.10.034
26.
26. A. Fitch, N. C. Strandwitz, B. S. Brunschwig, and N. S. Lewis, J. Phys. Chem. C 117(5), 2008 (2013).
http://dx.doi.org/10.1021/jp3098457
27.
27. S. S. Kalanur, Y. J. Hwang, S. Y. Chae, and O. S. Joo, J. Mater. Chem. A 1(10), 3479 (2013).
http://dx.doi.org/10.1039/c3ta01175e
28.
28. R. H. Goncalves, L. D. T. Leite, and E. R. Leite, ChemSusChem 5(12), 2341 (2012).
http://dx.doi.org/10.1002/cssc.201200484
29.
29. H. G. Kim, P. H. Borse, J. S. Jang, C. W. Ahn, E. D. Jeong, and J. S. Lee, Adv. Mater. 23, 2088 (2011)
http://dx.doi.org/10.1002/adma.201004171
30.
30. O. K. Varghese and C. A. Grimes, Sol. Energy Mat. Sol. Cells 92(4), 374 (2008).
http://dx.doi.org/10.1016/j.solmat.2007.11.006
31.
31. T. J. LaTempa, X. J. Feng, M. Paulose, and C. A. Grimes, J. Phys. Chem. C 113(36), 16293 (2009).
http://dx.doi.org/10.1021/jp904560n
32.
32. S. K. Mohapatra, S. E. John, S. Banerjee, and M. Misra, Chem. Mater. 21(14), 3048 (2009).
http://dx.doi.org/10.1021/cm8030208
33.
33. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett. 5(1), 191 (2005).
http://dx.doi.org/10.1021/nl048301k
34.
34. M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Grimes, J. Phys. Chem. B 110(33), 16179 (2006).
http://dx.doi.org/10.1021/jp064020k
35.
35. A. Duret and M. Gratzel, J. Phys. Chem. B 109(36), 17184 (2005).
http://dx.doi.org/10.1021/jp044127c
36.
36. I. Cesar, A. Kay, J. A. G. Martinez, and M. Gratzel, J. Am. Chem. Soc. 128(14), 4582 (2006).
http://dx.doi.org/10.1021/ja060292p
37.
37. F. Amano, M. Tian, G. Wu, B. Ohtani, and A. Chen, ACS Appl. Mater. Interfaces 3(10), 4047 (2011).
http://dx.doi.org/10.1021/am200897n
38.
38. J. Yang, W. Li, J. Li, D. Sun, and Q. Chen, J. Mater. Chem. 22(34), 17744 (2012).
http://dx.doi.org/10.1039/c2jm33199c
39.
39. A. Kay, I. Cesar, and M. Gratzel, J. Am. Chem. Soc. 128(49), 15714 (2006).
http://dx.doi.org/10.1021/ja064380l
40.
40. L. W. Zhang, C. Baumanis, L. Robben, T. Kandiel, and D. Bahnemann, Small 7(19), 2714 (2011).
http://dx.doi.org/10.1002/smll.201101152
41.
41. E. Yablonovitch, Phys. Rev. Lett. 58(20), 2059 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2059
42.
42. S. John, Phys. Rev. Lett. 58(23), 2486 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2486
43.
43. P. Russell, Science 299(5605), 358 (2003).
http://dx.doi.org/10.1126/science.1079280
44.
44. K. Ishizaki and S. Noda, Nature (London) 460(7253), 367 (2009).
http://dx.doi.org/10.1038/nature08190
45.
45. J. I. L. Chen, G. von Freymann, S. Y. Choi, V. Kitaev, and G. A. Ozin, Adv. Mater. 18(14), 1915 (2006).
http://dx.doi.org/10.1002/adma.200600588
46.
46. X. Shi, K. Zhang, K. Shin, J. H. Moon, T.-W. Lee, and J. H. Park, Phys. Chem. Chem. Phys. 15(28), 11717 (2013).
http://dx.doi.org/10.1039/c3cp50459j
47.
47. S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, J. Am. Chem. Soc. 125(20), 6306 (2003).
http://dx.doi.org/10.1021/ja034650p
48.
48. T. Suezaki, P. G. O’Brien, J. I. L. Chen, E. Loso, N. P. Kherani, and G. A. Ozin, Adv. Mater. 21(5), 559 (2009).
http://dx.doi.org/10.1002/adma.200802123
49.
49. S. Guldin, S. Huttner, M. Kolle, M. E. Welland, P. Muller-Buschbaum, R. H. Friend, U. Steiner, and N. Tetreault, Nano Lett. 10(7), 2303 (2010).
http://dx.doi.org/10.1021/nl904017t
50.
50. S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, J. Am. Chem. Soc. 125(38), 11466 (2003).
http://dx.doi.org/10.1021/ja0361749
51.
51. S. Y. Kuang, L. X. Yang, S. L. Luo, and Q. Y. Cai, Appl. Surf. Sci. 255(16), 7385 (2009).
http://dx.doi.org/10.1016/j.apsusc.2009.04.005
52.
52. Y. Wang, T. Yu, X. Y. Chen, H. T. Zhang, S. X. Ouyang, Z. S. Li, J. H. Ye, and Z. G. Zou, J. Phys. D: Appl. Phys. 40(13), 3925 (2007).
http://dx.doi.org/10.1088/0022-3727/40/13/003
53.
53. K. J. McDonald and K. S. Choi, Chem. Mat. 23(21), 4863 (2011).
http://dx.doi.org/10.1021/cm202399g
54.
54. J. Yin, L. J. Bie, and Z. H. Yuan, Mater. Res. Bull. 42(8), 1402 (2007).
http://dx.doi.org/10.1016/j.materresbull.2006.11.009
55.
55. J. H. Park, O. O. Park, and S. Kim, Appl. Phys. Lett. 89(16), 163106 (2006).
http://dx.doi.org/10.1063/1.2357878
56.
56. J. Wang, Y. H. Han, M. Z. Feng, J. Z. Chen, X. J. Li, and S. Q. Zhang, J. Mater. Sci. 46(2), 416 (2011).
http://dx.doi.org/10.1007/s10853-010-4863-z
57.
57. W. Smith, A. Wolcott, R. C. Fitzmorris, J. Z. Zhang, and Y. P. Zhao, J. Mater. Chem. 21(29), 10792 (2011).
http://dx.doi.org/10.1039/c1jm11629k
58.
58. J. Z. Su, L. J. Guo, N. Z. Bao, and C. A. Grimes, Nano Lett. 11(5), 1928 (2011).
http://dx.doi.org/10.1021/nl2000743
59.
59. S. J. Hong, S. Lee, J. S. Jang, and J. S. Lee, Energy Environ. Sci. 4(5), 1781 (2011).
http://dx.doi.org/10.1039/c0ee00743a
60.
60. E. S. Kim, N. Nishimura, G. Magesh, J. Y. Kim, J. W. Jang, H. Jun, J. Kubota, K. Domen, and J. S. Lee, J. Am. Chem. Soc. 135, 5375 (2013).
http://dx.doi.org/10.1021/ja308723w
61.
61. F. Le Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Gratzel, and K. Sivula, Chem. Sci. 2(4), 737 (2011).
http://dx.doi.org/10.1039/c0sc00578a
62.
62. T. Hisatomi, F. Le Formal, M. Cornuz, J. Brillet, N. Tetreault, K. Sivula, and M. Gratzel, Energy Environ. Sci. 4(7), 2512 (2011).
http://dx.doi.org/10.1039/c1ee01194d
63.
63. Q. F. Zhang, C. S. Dandeneau, X. Y. Zhou, and G. Z. Cao, Adv. Mater. 21(41), 4087 (2009).
http://dx.doi.org/10.1002/adma.200803827
64.
64. S. Cho, J. W. Jang, J. S. Lee, and K. H. Lee, Nanoscale 4(6), 2066 (2012).
http://dx.doi.org/10.1039/c2nr11869f
65.
65. M. Zhong, Y. B. Li, I. Yamada, and J. J. Delaunay, Nanoscale 4(5), 1509 (2012).
http://dx.doi.org/10.1039/c2nr11451h
66.
66. H. Jun, B. Im, J. Y. Kim, Y. O. Im, J. W. Jang, E. S. Kim, H. J. Kang, S. J. Hong, and J. S. Lee, Energy Environ. Sci. 5(4), 6375 (2012).
http://dx.doi.org/10.1039/c1ee02526k
67.
67. J. A. Glasscock, P. R. F. Barnes, I. C. Plumb, and N. Savvides, J. Phys. Chem. C 111(44), 16477 (2007).
http://dx.doi.org/10.1021/jp074556l
68.
68. Y. S. Hu, A. Kleiman-Shwarsctein, A. J. Forman, D. Hazen, J. N. Park, and E. W. McFarland, Chem. Mat. 20(12), 3803 (2008).
http://dx.doi.org/10.1021/cm800144q
69.
69. A. Kleiman-Shwarsctein, Y. S. Hu, A. J. Forman, G. D. Stucky, and E. W. McFarland, J. Phys. Chem. C 112(40), 15900 (2008).
http://dx.doi.org/10.1021/jp803775j
70.
70. K. P. S. Parmar, H. J. Kang, A. Bist, P. Dua, J. S. Jang, and J. S. Lee, ChemSusChem 5(10), 1926 (2012).
http://dx.doi.org/10.1002/cssc.201200254
71.
71. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293(5528), 269 (2001).
http://dx.doi.org/10.1126/science.1061051
72.
72. H. Irie, Y. Watanabe, and K. Hashimoto, J. Phys. Chem. B 107(23), 5483 (2003).
http://dx.doi.org/10.1021/jp030133h
73.
73. S. Cho, J. W. Jang, K. J. Kong, E. S. Kim, K. H. Lee, and J. S. Lee, Adv. Funct. Mater. 23(19), 2348 (2013).
http://dx.doi.org/10.1002/adfm.201201883
74.
74. S. U. M. Khan, M. Al-Shahry, and W. B. Ingler, Science 297(5590), 2243 (2002).
http://dx.doi.org/10.1126/science.1075035
75.
75. D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, Nat. Mater. 12(9), 798 (2013).
http://dx.doi.org/10.1038/nmat3697
76.
76. J. H. Park, S. Kim, and A. J. Bard, Nano Lett. 6(1), 24 (2006).
http://dx.doi.org/10.1021/nl051807y
77.
77. K. S. Raja, M. Misra, V. K. Mahajan, T. Gandhi, P. Pillai, and S. K. Mohapatra, J. Power Sources 161(2), 1450 (2006).
http://dx.doi.org/10.1016/j.jpowsour.2006.06.044
78.
78. X. L. Cui, M. Ma, W. Zhang, Y. C. Yang, and Z. J. Zhang, Electrochem. Commun. 10(3), 367 (2008).
http://dx.doi.org/10.1016/j.elecom.2007.12.037
79.
79. S. Hoang, S. W. Guo, N. T. Hahn, A. J. Bard, and C. B. Mullins, Nano Lett. 12(1), 26 (2012).
http://dx.doi.org/10.1021/nl2028188
80.
80. X. Y. Yang, A. Wolcott, G. M. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, Nano Lett. 9(6), 2331 (2009).
http://dx.doi.org/10.1021/nl900772q
81.
81. Y. C. Qiu, K. Y. Yan, H. Deng, and S. H. Yang, Nano Lett. 12(1), 407 (2012).
http://dx.doi.org/10.1021/nl2037326
82.
82. G. Liu, L. Z. Wang, C. H. Sun, X. X. Yan, X. W. Wang, Z. G. Chen, S. C. Smith, H. M. Cheng, and G. Q. Lu, Chem. Mater. 21(7), 1266 (2009).
http://dx.doi.org/10.1021/cm802986r
83.
83. W. J. Jo, J.-W. Jang, K.-j. Kong, H. J. Kang, J. Y. Kim, H. Jun, K. P. S. Parmar, and J. S. Lee, Angew. Chem., Int. Ed. 51, 3147 (2012).
http://dx.doi.org/10.1002/anie.201108276
84.
84. H. Jin, S. Choi, H. J. Lee, and S. Kim, J. Phys. Chem. Lett. 4(15), 2461 (2013).
http://dx.doi.org/10.1021/jz400910x
85.
85. L. J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, Appl. Phys. Lett. 91(2), 023116 (2007).
http://dx.doi.org/10.1063/1.2757130
86.
86. C. H. Chang and Y. L. Lee, Appl. Phys. Lett. 91(5), 053503 (2007).
http://dx.doi.org/10.1063/1.2768311
87.
87. AJ Nozik, Physica E 14(1), 115 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
88.
88. A. Ruland, C. Schulz-Drost, V. Sgobba, and D. M. Guldi, Adv. Mater. 23(39), 4573 (2011).
http://dx.doi.org/10.1002/adma.201101423
89.
89. P. V. Kamat, J. Phys. Chem. C 111(7), 2834 (2007).
http://dx.doi.org/10.1021/jp066952u
90.
90. D. F. Watson, J. Phys. Chem. Lett. 1(15), 2299 (2010).
http://dx.doi.org/10.1021/jz100571u
91.
91. S. G. Chen, M. Paulose, C. Ruan, G. K. Mor, O. K. Varghese, D. Kouzoudis, and C. A. Grimes, J. Photochem. Photobiol. A 177(2–3), 177 (2006).
http://dx.doi.org/10.1016/j.jphotochem.2005.05.023
92.
92. C. W. Cheng, S. K. Karuturi, L. J. Liu, J. P. Liu, H. X. Li, L. T. Su, A. I. Y. Tok, and H. J. Fan, Small 8(1), 37 (2012).
http://dx.doi.org/10.1002/smll.201101660
93.
93. S. Hotchandani and P. V. Kamat, J. Phys. Chem. 96(16), 6834 (1992).
http://dx.doi.org/10.1021/j100195a056
94.
94. Y. Tak, S. J. Hong, J. S. Lee, and K. Yong, Cryst. Growth Des. 9(6), 2627 (2009).
http://dx.doi.org/10.1021/cg801076b
95.
95. C. J. Lin, Y. T. Lu, C. H. Hsieh, and S. H. Chien, Appl. Phys. Lett. 94(11), 113102 (2009).
http://dx.doi.org/10.1063/1.3099338
96.
96. S. Cho, J. W. Jang, S. H. Lim, H. J. Kang, S. W. Rhee, J. S. Lee, and K. H. Lee, J. Mater. Chem. 21(44), 17816 (2011).
http://dx.doi.org/10.1039/c1jm14014k
97.
97. X. Zhang, F. Wang, H. Huang, H. T. Li, X. Han, Y. Liu, and Z. H. Kang, Nanoscale 5(6), 2274 (2013).
http://dx.doi.org/10.1039/c3nr34142a
98.
98. Y. L. Lee, C. F. Chi, and S. Y. Liau, Chem. Mater. 22(3), 922 (2010).
http://dx.doi.org/10.1021/cm901762h
99.
99. P. Rodenas, T. Song, P. Sudhagar, G. Marzari, H. Han, L. Badia-Bou, S. Gimenez, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, U. Paik, and Y. S. Kang, Adv. Energy Mater. 3(2), 176 (2013).
http://dx.doi.org/10.1002/aenm.201200255
100.
100. G. M. Wang, X. Y. Yang, F. Qian, J. Z. Zhang, and Y. Li, Nano Lett. 10(3), 1088 (2010).
http://dx.doi.org/10.1021/nl100250z
101.
101. R. Trevisan, P. Rodenas, V. Gonzalez-Pedro, C. Sima, R. S. Sanchez, E. M. Barea, I. Mora-Sero, F. Fabregat-Santiago, and S. Gimenez, J. Phys. Chem. Lett. 4(1), 141 (2013).
http://dx.doi.org/10.1021/jz301890m
102.
102. P. V. Kamat, J. Phys. Chem. C 112(48), 18737 (2008).
http://dx.doi.org/10.1021/jp806791s
103.
103. H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang, K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, J. Phys. Chem. C 115(44), 21971 (2011).
http://dx.doi.org/10.1021/jp204291b
104.
104. W. B. Hou and S. B. Cronin, Adv. Funct. Mater. 23(13), 1612 (2013).
http://dx.doi.org/10.1002/adfm.201202148
105.
105. S. Link and M. A. El-Sayed, J. Phys. Chem. B 103(40), 8410 (1999).
http://dx.doi.org/10.1021/jp9917648
106.
106. T. Atay, J. H. Song, and A. V. Nurmikko, Nano Lett. 4(9), 1627 (2004).
http://dx.doi.org/10.1021/nl049215n
107.
107. S. C. Warren and E. Thimsen, Energy Environ. Sci. 5(1), 5133 (2012).
http://dx.doi.org/10.1039/c1ee02875h
108.
108. H. W. Gao, C. Liu, H. E. Jeong, and P. D. Yang, ACS Nano 6(1), 234 (2012).
http://dx.doi.org/10.1021/nn203457a
109.
109. I. Thomann, B. A. Pinaud, Z. B. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, Nano Lett. 11(8), 3440 (2011).
http://dx.doi.org/10.1021/nl201908s
110.
110. D. B. Ingram and S. Linic, J. Am. Chem. Soc. 133(14), 5202 (2011).
http://dx.doi.org/10.1021/ja200086g
111.
111. Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, Nano Lett. 11(3), 1111 (2011).
http://dx.doi.org/10.1021/nl104005n
112.
112. Z. H. Zhang, L. B. Zhang, M. N. Hedhili, H. N. Zhang, and P. Wang, Nano Lett. 13(1), 14 (2013).
http://dx.doi.org/10.1021/nl3029202
113.
113. Y. C. Pu, G. M. Wang, K. D. Chang, Y. C. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. H. Lu, Y. X. Tong, J. Z. Zhang, Y. J. Hsu, and Y. Li, Nano Lett. 13(8), 3817 (2013).
http://dx.doi.org/10.1021/nl4018385
114.
114. H. M. Chen, C. K. Chen, C. J. Chen, L. C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, ACS Nano 6(8), 7362 (2012).
http://dx.doi.org/10.1021/nn3024877
115.
115. D. R. Gamelin, Nat. Chem. 4(12), 965 (2012).
http://dx.doi.org/10.1038/nchem.1514
116.
116. Y. X. Zhao, E. A. Hernandez-Pagan, N. M. Vargas-Barbosa, J. L. Dysart, and T. E. Mallouk, J. Phys. Chem. Lett. 2(5), 402 (2011).
http://dx.doi.org/10.1021/jz200051c
117.
117. Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, J. Phys. Chem. Lett. 3(3), 399 (2012).
http://dx.doi.org/10.1021/jz2016507
118.
118. N. Mamaca, E. Mayousse, S. Arrii-Clacens, T. W. Napporn, K. Servat, N. Guillet, and K. B. Kokoh, Appl. Catal. B 111, 376 (2012).
http://dx.doi.org/10.1016/j.apcatb.2011.10.020
119.
119. L. A. Naslund, C. M. Sanchez-Sanchez, A. S. Ingason, J. Backstrom, E. Herrero, J. Rosen, and S. Holmin, J. Phys. Chem. C 117(12), 6126 (2013).
http://dx.doi.org/10.1021/jp308941g
120.
120. S. A. Majumder and S. U. M. Khan, Int. J. Hydrogen Energy 19(11), 881 (1994).
http://dx.doi.org/10.1016/0360-3199(94)90040-X
121.
121. S. D. Tilley, M. Cornuz, K. Sivula, and M. Gratzel, Angew. Chem., Int. Ed. 49(36), 6405 (2010).
http://dx.doi.org/10.1002/anie.201003110
122.
122. M. Seol, J. W. Jang, S. Cho, J. S. Lee, and K. Yong, Chem. Mater. 25(2), 184 (2013).
http://dx.doi.org/10.1021/cm303206s
123.
123. M. W. Kanan and D. G. Nocera, Science 321(5892), 1072 (2008).
http://dx.doi.org/10.1126/science.1162018
124.
124. Y. Surendranath, M. Dinca, and D. G. Nocera, J. Am. Chem. Soc. 131(7), 2615 (2009).
http://dx.doi.org/10.1021/ja807769r
125.
125. Y. H. Lai, C. Y. Lin, Y. K. Lv, T. C. King, A. Steiner, N. M. Muresan, L. H. Gan, D. S. Wright, and E. Reisner, Chem. Commun. 49(39), 4331 (2013).
http://dx.doi.org/10.1039/c2cc34934e
126.
126. V. Artero, M. Chavarot-Kerlidou, and M. Fontecave, Angew. Chem., Int. Ed. 50(32), 7238 (2011).
http://dx.doi.org/10.1002/anie.201007987
127.
127. D. A. Lutterman, Y. Surendranath, and D. G. Nocera, J. Am. Chem. Soc. 131(11), 3838 (2009).
http://dx.doi.org/10.1021/ja900023k
128.
128. D. K. Zhong, J. W. Sun, H. Inumaru, and D. R. Gamelin, J. Am. Chem. Soc. 131(17), 6086 (2009).
http://dx.doi.org/10.1021/ja9016478
129.
129. D. K. Zhong and D. R. Gamelin, J. Am. Chem. Soc. 132(12), 4202 (2010).
http://dx.doi.org/10.1021/ja908730h
130.
130. E. M. P. Steinmiller and K. S. Choi, Proc. Natl. Acad. Sci. U.S.A. 106(49), 20633 (2009).
http://dx.doi.org/10.1073/pnas.0910203106
131.
131. D. K. Zhong, S. Choi, and D. R. Gamelin, J. Am. Chem. Soc. 133(45), 18370 (2011).
http://dx.doi.org/10.1021/ja207348x
132.
132. J. A. Seabold and K.-S. Choi, Chem. Mater. 23(5), 1105 (2011).
http://dx.doi.org/10.1021/cm1019469
133.
133. M. Barroso, C. A. Mesa, S. R. Pendlebury, A. J. Cowan, T. Hisatomi, K. Sivula, M. Gratzel, D. R. Klug, and J. R. Durrant, Proc. Natl. Acad. Sci. U.S.A. 109(39), 15640 (2012).
http://dx.doi.org/10.1073/pnas.1118326109
134.
134. B. Klahr, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, and T. W. Hamann, J. Am. Chem. Soc. 134(40), 16693 (2012).
http://dx.doi.org/10.1021/ja306427f
135.
135. J. Hensel, G. M. Wang, Y. Li, and J. Z. Zhang, Nano Lett. 10(2), 478 (2010).
http://dx.doi.org/10.1021/nl903217w
136.
136. J. Lee, S. Mubeen, X. L. Ji, G. D. Stucky, and M. Moskovits, Nano Lett. 12(9), 5014 (2012).
http://dx.doi.org/10.1021/nl302796f
137.
137. J. Y. Kim, G. Magesh, D. H. Youn, Y. Lee, J. Kubota, K. Domen, and J. S. Lee, Sci. Rep. 3, 2681 (2013).
http://dx.doi.org/10.1038/srep02681
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4861798
Loading
/content/aip/journal/aplmater/2/1/10.1063/1.4861798
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/2/1/10.1063/1.4861798
2014-01-31
2014-07-28

Abstract

Photoelectrochemical (PEC) water splitting to hydrogen is an attractive method for capturing and storing the solar energy in the form of chemical energy. Metal oxides are promising photoanode materials due to their low-cost synthetic routes and higher stability than other semiconductors. In this paper, we provide an overview of recent efforts to improve PEC efficiencies via applying a variety of fabrication strategies to metal oxide photoanodes including (i) size and morphology-control, (ii) metal oxide heterostructuring, (iii) dopant incorporation, (iv) attachments of quantum dots as sensitizer, (v) attachments of plasmonic metal nanoparticles, and (vi) co-catalyst coupling. Each strategy highlights the underlying principles and mechanisms for the performance enhancements.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/2/1/1.4861798.html;jsessionid=1t7868kdbukyb.x-aip-live-06?itemId=/content/aip/journal/aplmater/2/1/10.1063/1.4861798&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/2/1/10.1063/1.4861798
10.1063/1.4861798
SEARCH_EXPAND_ITEM